
» Workfow Manual

November 2017

Author Tecnoteca srl

www.tecnoteca.com

 ENG

www.cmdbuild.org

Version

2.5

Workflow Manual

No part of this document may be reproduced, in whole or in part, without the express written permission
of Tecnoteca s.r.l.

CMDBuild ® uses many great technologies from the open source community:
PostgreSQL, Apache, Tomcat, Eclipse, Ext JS, JasperReports, IReport, Enhydra Shark, TWE, OCS
Inventory, Liferay, Alfresco, GeoServer, OpenLayers, Prefuse, Quartz, BiMserver.
We are thankful for the great contributions that led to the creation of these products.

CMDBuild ® is a project of Tecnoteca Srl. Tecnoteca is
responsible of software design and development, it's the official
maintainer and has registered the CMDBuild logo.

In the project also the Municipality of Udine was involved as the
initial customer.

CMDBuild ® is released under AGPL open source license (http://www.gnu.org/licenses/agpl-3.0.html)

CMDBuild ® is a registered trademark of Tecnoteca Srl.

Everytime the CMDBuild® logo is used, the official maintainer "Tecnoteca srl" must be mentioned; in
addition, there must be a link to the official website:

 http://www.cmdbuild.org.

CMDBuild ® logo:

• cannot be modified (color, proportion, shape, font) in any way, and cannot be integrated into
other logos

• cannot be used as a corporate logo, nor the company that uses it may appear as author / owner
/ maintainer of the project

• cannot be removed from the application, and in particular from the header at the top of each
page

The official website is http://www.cmdbuild.org

CMDBuild – Open Source Configuration and Management Database Page 2

http://www.cmdbuild.org/

Workflow Manual

Contents
Introduction.. 4

CMDBuild modules.. 4
Available documentation.. 5

Description of the workflow system..6
General Information... 6
Purposes... 6
Used tools.. 6
Terminology... 7
Refactoring 2.0.. 8

Implementation method..10
Workflows as special classes.. 10
Building the workflow... 10
Defining a new process... 11
Initiation and progress of a process...12

Interaction of the workflow with external tools..14
General Information... 14
Start of a process from an intranet portal via CMDBuild GUI Framework..14

Example of configuration of a new process..16
General Information... 16
Description of the RfC process used as example..16
Phase 1 – Items creation in CMDBuild..17
Phase 2 – Configuration of the flow with TWE...23
Phase 3 – Importation of the XPDL file in CMDBuild...26
Phase 4 – Implementation of the process from CMDBuild..27

Widgets prompted to use in the user activities of the workflow...36
Widget list.. 36

API prompted to use in the automatic activities of the workflow...44
General Information... 44
Key words.. 44
Management of CMDBuild items...44
Access methods to CMDBuild... 47
Methods for types conversion.. 58

Appendix: Documentation to use TWS 2.3...60
Foreword... 60
Automatic methods used in the workflow...60
Template automatic methods usable in the workflow..67

APPENDIX: Glossary...69

CMDBuild – Open Source Configuration and Management Database Page 3

Workflow Manual Introduction

Introduction
CMDBuild is an Open Source web application designed to model and manage assets and services
controlled by the ICT Department, therefore it handles the related workflow operations, if
necessary according to ITIL best practices.

The management of a Configuration Database (CMDB) means keeping up-to-date, and available
to other processes, the database related to the components in use, their relations and their
changes over time.

With CMDBuild, the system administrator can build and extend its own CMDB (hence the project
name), modeling the CMDB according to the company needs; the administration module allows you to
progressively add new classes of items, new attributes and new relations. You can also define filters,
"views" and access permissions limited to rows and columns of every class.

CMDBuild provides complete support for ITIL best practices, which have become a "standard de
facto" by now, a non-proprietary system for services management with process-oriented criteria.

Thanks to the integrated workflow engine, you can create new workflow processes with external
visual editors, and import / execute them inside the CMDBuild application according to the
configured automatisms.

A task manager integrated in the user interface of the Administration Module is also available. It
allows to manage different operations (process starts, e-mail receiving and sending, connector
executions) and data controls on the CMDB (synchronous and asynchronous events). Based on
their findings, it sends notifications, starts workflows and executes scripts.

CMDBuild includes also JasperReports, an open source report engine that allows you to create
reports; you can design (with an external editor), import and run custom reports inside CMDBuild.

Then it is possible to define some dashboards made up of charts which immediately show the situation
of some indicators in the current system (KPI).

CMDBuild integrates Alfresco, the popular open source document management system. You can
attach documents, pictures and other files.

Moreover, you can use GIS features to georeference and display assets on a geographical map
(external map services) and / or an office plan (local GeoServer) and BIM features to view 3D
models (IFC format).

The system includes also a SOAP and a REST webservice, to implement interoperability solutions
with SOA.

CMDBuild includes two frameworks called Basic Connector and Advanced Connector, which are
able - through the SOAP webservice - to sync the information recorded in the CMDB with external
data sources, for example through automatic inventory systems (such as the open source OCS
Inventory) or through virtualization or monitoring systems.

Through the REST webservice, CMDBuild GUI Framework allows to issue custom webpages on
external portals able to interact with the CMDB.

A user interface for mobile tools (smartphones and tablets) is also available. It is implemented as
multi-platform app (iOS, Android) and linked to the CMDB through the REST webservice.

CMDBuild modules
The CMDBuild application includes two main modules:

CMDBuild – Open Source Configuration and Management Database Page 4

Workflow Manual Introduction

• the Administration Module for the initial definition and the next changes of the data model
and the base configuration (relation classes and typologies, users and authorization,
dashboards, upload report and workflows, options and parameters)

• the Management Module, used to manage cards and relations, add attachments, run
workflow processes, visualize dashboards and execute reports

The Administration Module is available only to the users with the "administrator" role; the
Management Module is used by all the users who view and edit data.

Available documentation
This manual describes the workflow process included in the CMDBuild application, through which
you can configure (Administration module) and run (Management Module) processes for the
management of collaborative activities.

You can find all the manuals on the official website (http://www.cmdbuild.org):

• system overview ("Overview Manual")

• system administration ("Administrator Manual")

• system usage (“User Manual”)

• installation and system management ("Technical Manual")

• webservice details and configuration (“Webservice Manual”)

• connectors to sync data through external systems (“ConnectorsManual”)

CMDBuild – Open Source Configuration and Management Database Page 5

Workflow Manual Description of the workflow system

Description of the workflow system

General Information
In order to support ITIL methodological indications, CMDBuild is able not only to manage the
update of the asset inventory and their functional relations, but also to enable the definition and
control of the processes for IT service management.

A process includes an activity sequence, carried out by operators and/or computer applications,
every application represents an operation that has to be carried out within the process, related, in
this case, to the IT asset management with quality criteria.

Given the amount of processes options, the organizational procedures and the flexibility pursued
by the CMDBuild project, we chose not to implement a series of rigid and predefined processes,
but a generic workflow engine to model processes case-by-case.

In the first part of this document you wil find general concepts and basic mechanisms implemented
in the system with the CMDBuild 2.0 refactoring.

In the second part there is a sample of simplified workflow, described in its configuration steps.

In the third part, you will find the technical tools available for the configuration of a workflow:
widgets definition, description of API functions which can be used in the scripts for the definition of
automatisms, performed in the workflow.

In appendix there is the specified technical documentation of the workflow system used until
CMDBuild 1.5, whose compatibility is maintained also in CMDBuild 2.0; it will be discarded as soon
as possible.

Purposes
The workflow management system is an important feature of CMDBuild and provides:

• a standard interface for users

• a secure update of the CMDB

• a tool to monitor provided services

• a repository for activities data, useful to check SLA

ITIL processes, which can be configured in CMDBuild, include: Incident Management, Problem
Management, Change Management, Configuration Management, Service Catalogue Management,
etc.

Other workflow types concern asset movement, entry of new staff, activation of new work projects,
ect.

Used tools
The application chosen for the workflow management uses the following tools:

• XPDL 2.0 (http://www.wfmc.org/xpdl.html) as definition language (standardized from WfMC,
WorkFlow Management Coalition according to the model as follows)

• open source TWS Together Workflow Server 4.4 engine (http://www.together.at/prod/workflow/tws), an
extensible framework for a complete and standard implementation of the specific WfMC
(http://www.wfmc.org/) and OMG, using XPDL as a native language

• the graphical editor TWE Together Workflow Editor 4.4
(http://www.together.at/prod/workflow/twe) for the workflow design and for the definition of

CMDBuild – Open Source Configuration and Management Database Page 6

http://www.together.at/prod/workflow/twe
http://www.together.at/prod/workflow/tws
http://www.wfmc.org/xpdl.html

Workflow Manual Description of the workflow system

integration mechanisms with CMDBuild

The following schema shows the workflow management according to the model standardized with
the WfMC.

Terminology
The following "vocabulary" includes the following terms:

• process: sequence of steps that realize an action

• activity: workflow step

• process instance: active process created executing the first step

• activity instance: creation of an activity, accomplished automatically or by an operator

The above terms are arranged into CMDBuild as follows:

• each process is related to a special class defined by the Administration Module under the
heading "Processes"; the class includes all attributes of the scheduled activities

• each "process instance" corresponds to a card of the "process" class (current activity),
combined with the list of its versions (ended activities)

• each activity instance corresponds to a card of the "process" class (current activity) or to a
historicized version (ended activity)

Each process has a name, one or more participants, some variables and a sequence of activities
and transitions which carry out it.

The process status can be:

• “active”, i.e. it is still in an intermediate activity

• “complete”, i.e. it ends its activity

• “aborted”, i.e. unnaturally terminated

• “suspeded”, i.e. maintained only for retrocompatibility with workflow system until CMDBuild

CMDBuild – Open Source Configuration and Management Database Page 7

Workflow Manual Description of the workflow system

1.5

Each activity can be distinguished by:

• a name

• a performer, which necessarily corresponds to a "user group" and optionally to an operator

• a type: process start, process ending, activity performed by an operator, activity
automatically carried out by the system

• any attributes coming from CMDBuild or inside the workflow, which will be set during its
implementation

• any widgets (visual controls of some predefined typologies) that will be activated during its
implementation

• a script (in the Beanshell, Groovy or Javascript languages), provided in the automatic
activities, through which the operations between an user activity and the following can be
carried out

Refactoring 2.0
With the 2.0 release we revised the workflow system, with upgrade to Together Workflow Server 4.4,
2.0 XPDL standard adoption, full support in CMDBuild to the native parallelism in the flow and
important performance improvements.

In order to simplify the writing we decided to provide a different definition modality of the automatic
activities, supporting the scriptwriting and excluding the use of "tools", available in the previoius
version of CMDBuild.

The scripts can be written in the BeanShell, Groovy or Javascript language and can use API
functions provided for the definition of automatisms (manipulation of process variables, card creation
and relations in CMDB, e-mail sending, report creation, etc).

The adoption of the new workflow system implies the lost of the retrocompatibility with workflows
developed up to the present day.

In order to grant longer period for the migration of the old workflows to the new adopted solutions we
decided to maintain in CMDBuild 2.0 the possibility to work - alternatively - both with Together
Workflow Server 2.3 (the version used until CMDBuild 1.5, based on XPDL 1.0) and with the new
version Together Workflow Server 4.4 (based on XPDL 2.0).

Then the adopted solution allows:

• new CMDBuild users to work with the new Together Workflow Server 4.4 and with the new
functionalities developed in the version 2.0 (native parallelism, automatisms configured
through scripts)

• old users to split the migration into two steps:

1. to activate the 2.0 version immediately to make use of the new dashboards and
other implemented functionalities, maintaining Together Workflow Server 2.3 active
(with improved performances)

2. to commute to Together Workflow Server 4.4 just after the test of the new
environment on the test instance, when the conversion tool is available.

The support tool to the workflows migration developed with the previous CMDBuild versions will be
then released.

It is advisable to migrate in a short time, since the double CMDBuild compatibility with Together

CMDBuild – Open Source Configuration and Management Database Page 8

Workflow Manual Description of the workflow system

Workflow Server 2.3 (XPDL 1.0) and Together Workflow Server 4.4 (XPDL 2.0) will be maintained for
a limited period.

CMDBuild – Open Source Configuration and Management Database Page 9

Workflow Manual Implementation method

Implementation method

Workflows as special classes
The mechanisms for the workflow management are implemented in CMDBuild through concepts
and procedures entirely consistent with the mechanisms already in the system for the management
of the cards.

The workflow management includes:

• “special” Process classes; each corresponds to a type of workflow

• attributes, corresponding to the information presented (for read or write) in the forms which
manage the realization of each single step of the process

• relations with other process instances or standard cards involved in the process

• users' groups, that will be able to perform every activity, coinciding with CMDBuild users'
groups

• special tools for customizing the behavior of the workflow (widgets and scripts written with
proper APIs)

Within the same homogeneity criteria between "normal" and "process" classes, we adopted the
following technical tactics:

• the new "confidential" superclass called "Activity" contains some attributes shared with
specific workflows, whose workflows are underclasses

• the "history" mechanism was used to draw the progress reports of a process

• the "relations" mechanism has been kept to create automatic or manual links between a
card and a process instance, or between two process instances

Building the workflow
The tools usable through the workflow visual editor are of utmost importance in enabling the design
of complex processes, and include:

• the choice of those attributes which can be placed on each form corresponding to a user
activity

• the choice of those widgets (visual controls) which can be placed on each form
corresponding to a user activity (viewing or creating or editing cards, viewing or creating
relations, single or multiple selection of cards, upload of the attached files, implementation
of reports)

• flow-control mechanisms, among them parallel activities and subprocesses

• scripting language (BeanShell, Groovy or Javascript) for the definition of those automatisms
which must be carried out between a user activity and the following

• API functions which can be called in the scripts

If you are interested in the documentation of further mechanisms used in the workflows, developed
for CMDBuild versions until 1.5 (and supported in CMDBuild 2.0 if you use Together Workflow
Server 2.3), see the documentation in Appendix (dedicated to the presentation of basic tools and
to the mechanism which defines the custom tool through proper templates).

CMDBuild – Open Source Configuration and Management Database Page 10

Workflow Manual Implementation method

Defining a new process
To create a new "Process" class, you should follow the next logic sequence of passages:

• analysis of the new process which has to be implemented, in order to single out:

▫ list of the users' groups involved in the process

▫ workflow: user activities, automatic activities, transition conditions, etc

▫ descriptive attributes of the process in its user activities and the related typologies
(strings, integer, etc) and the presentation mode (read-only, reading and writing,
possible compulsoriness)

▫ predefined lists of values required for the creation of "Lookup" attributes

▫ domains required to deal correlations between the new process and other classes or
other pre-existing processes (which might also be used to create the "Reference"
attributes)

▫ widgets to configure in every user activity

▫ widgets to configure in every automatic process activity

• creation of the new process class, which will be defined in the "Processes" section of the
CMDBuild Administration Module, complete of:

▫ specific attributes identified in the previous step

▫ domains identified in the previous step

• creation of missing users' groups, that should be added through the Administration Module

• through the Administration Module (from the “XPDL” TAB available for each “Process” class)
export of the new process template, which includes:

▫ process name

▫ list of process attributes, that will be placed in the various user activities

▫ list of "actors" (users) that interact with the process (the "System" role is automatically
created to position system activities)

• design of detail flow of the workflow using the TWE external editor, which will help the
completion of the template exported by CMDBuild

• save, using the special functions of TWE external editor of the XML file (to be exact XPDL
2.0) corresponding to the designed process

• import of the process schema in CMDBuild, using the special “XPDL” TAB, available under
the heading "Processes" in the Administration Module

Once concluded the operations described above, the new process can be used in the
Management Module, (Menu “Processes” or headings like “process” in the Navigation Menu), thus
the process can be executed using the workflow engine Together Workflow Server 4.4.

The above mentioned operations can be carried out when you need to edit an imported process,
but the changes must be received only through the new process instances which will be started.

CMDBuild – Open Source Configuration and Management Database Page 11

Workflow Manual Implementation method

Initiation and progress of a process
In the Management Module, CMDBuild can perform, through the support of the TWS Together
Workflow Server engine, the processes designed with TWE Together Workflow Editor and then
imported through the Administration Module.

In order to keep the greatest coherence with the CMDBuild functionalities, dedicated to the
management of the items cards in the system, the user interface of the Management Module was
designed so that it is consistent with the management of the normal data "classes":

• there is a special menu item "Processes" consistent with the "data sheets" (otherwise
"process" elements can be inserted in the Navigation menu with "data sheets" elements or
reports and dashboards)

• the process management draws on the standard managements which already exist for the
normal cards: “List”, “Card”, "Details" “Notes”, “Relations”, “History”, "Attachments"

• in the “List” TAB of a specific process, the user can see the activities instances, in which
he/she is involved (since he/she attends that activity or previous activities of that process)
with:

▫ filters by status (started, completed, suspended)

▫ data area with tabular display of the information (process name, activity name, request
description, process status and further attributes defined as "display base" in the
Administration Module), which you can click on in order to access to the management
card of that activity

▫ possible evidences of parallel activities for that process instance

▫ buttons to create a new activity or to make that choice

CMDBuild – Open Source Configuration and Management Database Page 12

Workflow Manual Implementation method

• in the “Card” TAB you can visualize or fill in the attributes provided for that process activity
instance (write or read-only access can be set up through the TWE editor) otherwise you
can carry out further operations through the proper widgets (visual controls) configured with
the TWE editor

• in the “Notes” TAB you can visualize or insert notes about the activity instance

• in the “Relations” TAB you can visualize or insert relations between the activity instance
and the instances of other classes (“cards”)

• in the “History” TAB you can visualize the previous versions of that activity instance
(instances already carried out)

The list of activities is displayed high up in the following exemplifying form, while you can carry out
an activity filling in the card at the bottom.

Since workflows are peculiar classes, you can find the control buttons also in the upper right of the
workflow management form to display full screen the upper or lower side of the form.

CMDBuild – Open Source Configuration and Management Database Page 13

Workflow Manual Interaction of the workflow with external tools

Interaction of the workflow with external tools

General Information
In some cases it may be required that a process (like a new request of HelpDesk) is started by a
user who is not expert enough at using CMDBuild (such as the user of the item or of the IT
service).

This can be solved using the CMDBuild GUI Framework, described as follows.

Start of a process from an intranet portal via CMDBuild GUI Framework
The GUI Framework is a javascript / Jquery development environment, used to implement a
simplified user interface. Thanks to it, non-expert users can interact with the CMDBuild application.

The GUI Framework includes the following main features:

• it can be activated in portals based on different technologies

• it allows an (almost) unlimited freedom when projecting the graphic layout, defined through
an XML descriptor and with the possibility of intervening on the CSS

• it grants a quick configuration thanks to predefined functions (communication,
authentication logics, etc.) and to native graphic solutions (forms, grids, upload buttons and
other widgets)

• it adapts to workflow advancement forms designed through the visual editor TWE

• it interacts with CMDBuild through the REST webservice

• it is able to gather data from the database of other applications, allowing the management
of mix solutions

An sample of implementation based on the CMDBuild GUI Framework is the Self-Service portal,
which is part of the preconfigured version CMDBuild READY2USE.

The CMDBuild Ready2Use Self-Service portal allows non-technician users to interact with the IT
employees in order to point out their needs and to keep up to date on the resolution activities.

Every user can access to the portal upon local authentication or authentication connected to the
Active Directory repository of the company.

The home page of the portal includes:

• a complete menu, on the left

• a quick access to the main features, up on the right

• the most recent IT news

• the advancement situation of the last forwarded requests

CMDBuild suggests an implementation of the functioning portal as portlet in the open source
Liferay portal. The used CMDBuild GUI Framework can be activated on portals based on different
technologies, since it is developed in javascript / JQuery environment. So, you can ask for custom
implementations of the self-service portal, which can work on various portals.

The CMDBuild Ready2Use Self-Service portal implements the following features:

• publication of IT news

• request for technical information

CMDBuild – Open Source Configuration and Management Database Page 14

Workflow Manual Interaction of the workflow with external tools

• opening of a damage notice

• request for an IT service, selected from the services catalogue

• consultation of the advancement of your own requests

• approval of authorization requests

• FAQ

• summary of received notification emails

• connected user profile

• list of assets and services assigned to the connected user

• useful links

The CMDBuild GUI Framework is not the only one possible option.

You can even implement external web interfaces from the beginning, using your favourite
development language and interacting with CMDBuild through its REST and SOAP webservices.

But this solution is less efficient if compared to the re-use of the available GUI Framework.

CMDBuild – Open Source Configuration and Management Database Page 15

Workflow Manual Example of configuration of a new process

Example of configuration of a new process

General Information
The chosen process that describes the various passages necessary for its configuration is a
simplified Request for Change (or RfC) process.

It is an extremely simplified process, modelled only for educational purposes; it was suggested for
configuration modalities, not for a real use in the production.

The sample process, complete with the definition in CMDBuild and the XPDL flow designed with
TWE, is available on the demo database supplied with CMDBuild.

Description of the RfC process used as example
The actors of the process are the users' groups:

• Helpdesk, which carries out the initial registration of the request received by a user

• Change Manager, responsible for the changes to the IT assets of the company

• IT expert, involved for the production of analysis documents and for the change execution

Here's a logic schema of the process:

The process includes the following operations:

CMDBuild – Open Source Configuration and Management Database Page 16

Workflow Manual Example of configuration of a new process

• RfC recording

• evaluation of the request's formal aspects:

• direct closing if the RfC is not acceptable

• shift to the decisional step, if analysis activities are not requested

• execution request of one or more analysis typologies, among impact, cost, risk
analysis

• execution of the requested analysis typologies (impact, cost, risk analysis)

• decision by the Change Manager, which might be closed if the RfC is not approved

• RfC execution by an IT expert, if the RfC is approved

• final closing

Phase 1 – Items creation in CMDBuild
Through the Administration Module, under the heading Menu Processes, the process
RequestForChange is created in order to manage the workflow:

Some attributes provided in the process are Lookup, so they require the preventive definition of the
related lists, as you can see in the following screenshots.

CMDBuild – Open Source Configuration and Management Database Page 17

Workflow Manual Example of configuration of a new process

Lookup RFC category (linked to the “Category” attribute of the process)

Lookup RFC decision (linked to the “Decision” attribute of the process)

CMDBuild – Open Source Configuration and Management Database Page 18

Workflow Manual Example of configuration of a new process

Lookup RFC final result (linked to the “FinalResult” attribute of the process)

CMDBuild – Open Source Configuration and Management Database Page 19

Workflow Manual Example of configuration of a new process

Lookup RFC formal evaluation (linked to the “FormalEvaluation” attribute of the process)

Lookup RFC priority (linked to the “RFCPriority” attribute of the process)

Lookup RFC status (linked to the “RFCStatus” attribute of the process)

CMDBuild – Open Source Configuration and Management Database Page 20

Workflow Manual Example of configuration of a new process

The following "domains" are created in order to define in the process the “Requestor” attributes as
foreign keys on the class “Employee” and the relations with the Change Manager and IT experts,
who respectively assesses and execute the RfC:

CMDBuild – Open Source Configuration and Management Database Page 21

Workflow Manual Example of configuration of a new process

At this point the attributes of the process can be created:

Last thing you can create the users' groups involved in the workflow:

At this point you can export the XPDL schema produced by CMDBuild, used with the visual editor

CMDBuild – Open Source Configuration and Management Database Page 22

Workflow Manual Example of configuration of a new process

TWE to design the detail flow of the process itself:

The XPDL file will include only the general data available at the moment:

• process name

• list of unreserved process attributes present in the process management class

• list of the roles defined in the system

Those data will be the starting point of the activities carried out through the TWE editor, in which all
aspects related to the specific process flow will be enriched.

Phase 2 – Configuration of the flow with TWE
Through the TWE editor it's possible to perform the following operations:

• flow design by placing the activities of the various provided typologies (process starting and
ending, user activities, automatic activities, routing activities for the parallelism
management) and their connection according to the provided transition typologies

• completion of user activities, specifying what process attributes will be shown in the form
related to that activity (by indicating if read-only or read/write) and what widgets will be
made available in the same form (by indicating the parameters provided for each one)

• completion of automatic activities, writing the script which implements the automatisms
required in that activity (using the API available for that aim)

• completion of transitions among activities, specifying the criteria for the flow to cover a
transition or another, when the choice is binding

Here are some descriptive screenshots of the above mentioned activities.

CMDBuild – Open Source Configuration and Management Database Page 23

Workflow Manual Example of configuration of a new process

General flow design:

User activities - “Variables” TAB, used to choose the attributes which must appear in the form (with
possible indication of read-only modality):

User activities - “Extended Attributes” TAB, used to indicate the compulsory attributes
(“UPDATEREQUIRED”) and to request the input in the form of one or more widgets (in the sample

CMDBuild – Open Source Configuration and Management Database Page 24

Workflow Manual Example of configuration of a new process

openAttachments for the attachments and createModifyCard to consult the requester card)

Automatic activity - “Type” TAB, used to write the script that implements the provided automatisms
(in the sample, the activity SYS010 carries out the automatic structuring of the system date, the
automatic attribution of a univocal progressive number, the building of a significant description, the
structuring of a new state reached by the process).

CMDBuild – Open Source Configuration and Management Database Page 25

Workflow Manual Example of configuration of a new process

Transition, used to link two activities, conditionally or not (in the example it is provided a condition
related to the formal acceptance of the RfC)

Phase 3 – Importation of the XPDL file in CMDBuild
When the configuration of the process in TWE is complete, you will load in CMDBuild the related
XPDL file.

The process flow can be then modified several times, only exporting the last version from
CMDBuild, editing it with TWE and importing it again in CMDBuild. You have to consider that the
new version will be used when new processes are started, while each current process will go on
with the XPDL version valid when they first started.

CMDBuild – Open Source Configuration and Management Database Page 26

Workflow Manual Example of configuration of a new process

Phase 4 – Implementation of the process from CMDBuild
The workflow imported in CMDBuid is available to be used by the provided operators groups.

In the example, the management workflow of the RfC will be started by an operator of the
Helpdesk group, valued by an operator of the Change Manager group, analysed and carried out by
an operator of the IT expert group. You have to consider that the operators of the SuperUser group
can "personify" any other group defined in CMDBuild.

From the RfC process management, the RfC are presented as open (or in the state selected on
the upper list: open, suspended, complete, aborted, all).

Through the button “Start Request for Change” the Helpdesk can register a new request.

CMDBuild – Open Source Configuration and Management Database Page 27

Workflow Manual Example of configuration of a new process

Previous to filling in the form, the operator can refer to the operative instructions associable with
every user activity (which can be formulated with TWE, filling in the field “Description” in the
“General” TAB of the activity).

CMDBuild – Open Source Configuration and Management Database Page 28

Workflow Manual Example of configuration of a new process

By validating the progress at the following step, the activity is taken by the Change Manager, that -
in our simplified example - will fill in the following information:

In the example we provide at this step the possible use of the enclosed loading widgets and those
for the reference of the complete requester card:

CMDBuild – Open Source Configuration and Management Database Page 29

Workflow Manual Example of configuration of a new process

The Change Manager demanded in our example two typologies of analysis, so the workflow
moves to IT experts, that, in parallel (using one of the new functionalities implemented in
CMDBuild 2.0), can carry out their analysis (respectively risk and cost analysis) and transfer the
results.

CMDBuild – Open Source Configuration and Management Database Page 30

Workflow Manual Example of configuration of a new process

The Change Manager currently provides the results of the requested discussions and can take
his/her decision.

If the decision is positive, according to the flow designed with TWE, the IT experts are asked to
carry out the RfC activity. At the beginning the operation makes the request with indication of the
activities which must be carried out; at the end it registers the activities already carried out.

CMDBuild – Open Source Configuration and Management Database Page 31

Workflow Manual Example of configuration of a new process

As last operation, the Change Manager closes the RfC stating a positive result.

CMDBuild – Open Source Configuration and Management Database Page 32

Workflow Manual Example of configuration of a new process

At this stage, the RfC we worked on (number 7) will not appear in the list of the open RfC.

But it can be refered with all its information in the list of the completed RfC (the list can be selected
in the upper part of the form)

CMDBuild – Open Source Configuration and Management Database Page 33

Workflow Manual Example of configuration of a new process

In addition to the basic information, you can refer to the relations configured with that RfC process
instance (Relations TAB).

CMDBuild – Open Source Configuration and Management Database Page 34

Workflow Manual Example of configuration of a new process

You can also refer to the sequence complete with progress activities of the process (History TAB).

Uploading the attachments during the process (using the proper widget), you can refer to the
possible available documents (Attachments TAB).

CMDBuild – Open Source Configuration and Management Database Page 35

Workflow Manual Widgets prompted to use in the user activities of the workflow

Widgets prompted to use in the user activities of
the workflow

Widget list
CMDBuild makes some widgets available (visual controls), placed in the right part of the form,
which manage the progress of the process through the provided activity.

Graphically, such controls are designed with buttons with the specified label during the definition
step.

About the configuration, they are defined as “Extended attributes” (provided in the XPDL standard)
using the TWE editor.

In this document, the data types are both original (integer, string, date, float, boolean) and complex
types added in the workflows of CMDBuild (lookup = id + type + description, lookups = lookup
array, reference = id + idclass + description, references = reference array).

Visual control Description Parameters Notes

manageRelation It shows the card
list (which can be
selected) in relation
to the specified
card according to
the specified
domain

Input:

DomainName string
ClassName string
ObjId integer
ButtonLabel string
EnabledFunctions
character array
Required integer
IsDirect string

or

Input:
DomainName string
ObjRef reference
ButtonLabel string
EnabledFunctions
character array
Required integer

Output:
CheckArray
references

EnabledFunctions is an array of boolean
values which enables different
functionalities according to the following
positional method:
- link element
- add and link element
- activate selection check
- activate selection radio button
- modify relation
- disconnect element
- modify element
- delete element

The parameter Required = 1 must be
indicated only if the selection of at least
one element is compulsory
IsDirect can take the values “true” or “false”

linkCards It shows the
paginated list -
which can be
selected - of all
cards belonging to
a class, with
possible display on
a geographical
map

Input:
ClassName string
ButtonLabel string
SingleSelect integer
NoSelect integer
Required integer
Filter string
DefaultSelection
string

The parameter SingleSelect = 1 must be
indicatedonly if the selection of one single
row is allowed (radio-button rather than
checkbox)

The parameter NoSelect = 1 desables the
selection of rows (neither radio button nor
checkbox)

The parameter Required = 1 forces the
selection of one row at least

CMDBuild – Open Source Configuration and Management Database Page 36

Workflow Manual Widgets prompted to use in the user activities of the workflow

AllowCardEditing
integer
DisableGridFilterTog
gler boolean

Map string
StartMapWithLatitude
integer
StartMapWithLongitu
de integer
StartMapWithZoom
integer
Metadata string
MetadataOutput
string

Output:
CheckArray
references
[metadataOutput]
text

The Filter parameter is a CQL expression
(CMDBuild query language)
Example: Filter = “from Person where Id =
{client:Customer.Id}”

The optional parameter DefaultSelection
specifies the CQL query used for the
automatic selection when opening the
widget

The optional parameter AllowCardEditing =
1 adds an icon to edit the card

The optional parameter
DisableGridFilterToggler = “true” hides the
button “Disable filter”

The optional Map parameter enables the
map visualization (if it is set = 'enabled')

The parameters related to the initial
presentation of the map are optional

The Metadata variable accepts as unique
value (waiting for future extensions) the
'point:POINT' string.

The MetadataOutput variable accepts as
unique value the '_metadataOutput' string
that represents the name of the output
variable.

They both are necessary to manage the
selection of a single point on an already
existing polygonal.
The point coordinates will be given back in
the metadataOutput variable in the WGS84
format.

A possible example:
point:POINT(5847010.6684071
1438393.2786558)

createModifyCard It shows the
specified card in
the change (if ObjId
is specified),
otherwise it allows
the creation of a
new card in the
specified class

Input:
ClassName string
ButtonLabel string
ReadOnly integer

or

Input:
Reference reference
ButtonLabel string
ReadOnly integer

or

Input:
ClassName string
ObjId integer
ButtonLabel string
ReadOnly integer

Example:
ClassName='User'
ObjId=client:Requester
ButtonLabel = 'Create or modify User'
Requester

Note:
the prefix “client:” is required to access to a
variable before the workflow is proceeded
to the following step

ReadOnly=1 shows the card read-only

CMDBuild – Open Source Configuration and Management Database Page 37

Workflow Manual Widgets prompted to use in the user activities of the workflow

Output:
Reference reference

createReport Input:
ReportType string
ReportCode string
ButtonLabel string
ForcePDF integer
ForceCSV integer
Parameter-1
Parameter-2
...
Parameter-n

Output:
ReportURL string

ReportType can currently only take the
'custom' value
ReportCode coincides with the report
“Code” attribute in the schedule “Report”
ForcePDF forces the output in PDF format
ForceCSV forces the output in CSV format
Parameter-1 ... Parameter-n
they represent launch parameters provided
by the report

manageEmail It allows to product
through template or
write free e-mails
which will be sent
during the
development of the
process.

Input:
ButtonLabel string
ToAddresses string
CCAddresses string
Subject string
Content string
Assignments string
ReadOnly boolean

Visualizing e-mails, the electronic mailbox
will be checked for possible new e-mails

The parameters ToAddresses,
CcAddresses, Subject and Content are
"string template" which can include "tags"
for the "substitution" of variables (for further
information see the next paragraph)
It is required the configuration of
parameters for the e-mail sending in the file
workflow.conf.

openNote It visualizes the
page which
includes the HTML
editor to insert
notes

Input:
ButtonLabel string

It can't be used in the first process activity

openAttachment It visualizes the
page provided for
the uploading of
the file which has
to be enclosed to
the current process

Input:
ButtonLabel string

It can't be used in the first process activity

calendar It displays the
calendar with the
selected dates

Input:
ButtonLabel string
ClassName string
Filter string
EventStartDate date
EventEndDate date
EventTitle string

From the class ClassName you can collect
the dates you want to display in the
calendar, with possible filter (it is optional
but it takes the precedence on the
ClassName).
The parameter EventEndDate is optional.
EventTitle indicates the attribute that draws
the text and writes it on the calendar for
every date

presetFromCard It populates the
current activity with
those data
recovered by a
selected card.

Input:
ButtonLabel string
ClassName string
Filter string
AttributeMapping
string

ClassName, the name of the class, as an
alternative to Filter, which is on the contrary
a CQL expression.
AttributeMapping is a string in the form of
'a1=c1,a2=c2' that shows how to chart
activity attributes with the card ones. The
comma separates the assignments.

CMDBuild – Open Source Configuration and Management Database Page 38

Workflow Manual Widgets prompted to use in the user activities of the workflow

webService It displays the
result of a call to
Web Service (at
the moment SOAP
only) as a grid. You
can select some
rows of this grid to
obtain their XML
serialization as
widget output.

Input:
ButtonLabel string
EndPoint string
Method string
NameSpacePrefix
string
NameSpaceURI
string
NodesToUseAsRows
string
NodesToUseAsColu
mns string
SingleSelect='true'
Mandatory='true'
ReadOnly='true'
String parameters
OutputSeparator
string

Output:
Output string variable

EndPoint=Service URL
Method=Method name
NameSpacePrefix=namespace prefix'
(optional)
NameSpaceURI='namespace URI'
(optional)
NodesToUseAsRows=
Names of elements (separated by commas
without spaces) of the answer to display in
the grid
NodesToUseAsColumns=Names of the
elements (separated by commas without
spaces) of the answer to use as grid
columns.
Call parameters (optional) = possible
parameters provided for in the Web
Service.
Output variable(optional)
that will be optimized through the XML
serialization related to the selected nodes If
it is string type, then the separator has also
to be specified.
OutputSeparator (optional)= character to
separate the results. If it is missing, they
will be given back as string array.

startWorkflow It allows to start a
workflow according
two modalities:
1) configuration
read by widgets
2) configuration
read by a "support"
table

1) Input:
ButtonLabel string
WorkflowCode string

or

2) Input:

ButtonLabel string
FilterType string
Filter string

Output:
processRef
ReferenceType

1) WorkflowCode name of the starting
process

2) FilterType supports at the moment just
“cql”
Filter the cql filter to select a series of card
from a CMDBuild table.
The result of the filter should be the same
as the name list of the processes that
should be started from the widget itself.

grid It allows to manage
a row grid (by
adding, removing
and/or modifying
the rows)

Input:
ClassName string
ButtonLabel string
CardSeparator string
AttributeSeparator
string
KeyValueSeparator

ClassName is the name of the class in
which you want to work

CardSeparator separator among the
various inserted cards (default ";")
AttributeSeparator separator among the
attributes of the same card (default "&")

CMDBuild – Open Source Configuration and Management Database Page 39

Workflow Manual Widgets prompted to use in the user activities of the workflow

string
PresetsType="functio
n"
Presets string

Output:
Output string
variable

KeyValueSeparator separator between an
attribute and its value (default "==")
The output variable will be a single string
containing the serialization of the inserted
data, separated by the above-mentioned
characters

PresetType and Preset are necessary to
upload in advance some values into the
grid; these values will be then edited
directly by the user. If you want to use a
variable as input or the output of another
grid, you simply have to specify the key
Preset=InputString where InputString is a
formatted string like the grid output.
If you want to upload in advance the grid
starting from a function (having as column
names the same reference class fields) you
have specify PresetsType="function" and
Presets=”wf_function_name” where
”wf_function_name” is the name of a stored
procedure in the database defined
according to criteria used to create
dashboards.
Any parameter has to be specified in
succession in the form of:
Param1="value1" (function input
parameter)
Param2="value2" (function input
parameter)

There is also the possibility to upload in
advance the values into the grid through
the proper widget button called “Import
from CSV”. The file must follow the norms
defined for the CSV file importation into
CMDBuild. You will also have the
possibility to specify the separator and the
way to import the data (Replace or Add)

customForm It allows to manage
a form or a row grid
(by adding,
removing and/or
modifying the
rows)

Input:
ButtonLabel string
ModelType "[form|
class|function]"
Layout "[grid|form]"
DataType [raw_json|
raw_text|function]
ReadOnly "[true|
false]"
Required "[true|false]"
AddDisabled "[true|
false]"
DeleteDisabled "[true|
false]"
ImportDisabled "[true|
false]"

The structure of the custom form can be
defined starting from:
form - JSON item array
class - attributes of a class
function - function input parameters

The layout can be a form (as if it is a
CMDBuild card) or a row series.

The data of the widget can be initialized
starting form:
raw_json - JSON item array
raw_text – well-structured strings of text
function – output values of a function

Data can be serialized as type of text (see

CMDBuild – Open Source Configuration and Management Database Page 40

Workflow Manual Widgets prompted to use in the user activities of the workflow

ModifyDisabled "[true|
false]"
SerializationType
"[json|text]"
KeyValueSeparator
string
AttributesSeparator
string
RowsSeparator string

Output:
Output string variable

the widget grid) or as type of json.

navigationTree It allows to select
one or more data
cards through an
interface
that is based on a
preconfigured
navigation tree
(subset of domain
graph)

Input:
NavigationTreeName
string
ButtonLabel string

Output:
CheckArray
references

NavigationTreeName represents the name
of that tree you want to display

adminStart By a process with
more start activities
distinct for each
group, it singles out
the activity for the
administer user

No input nor output parameters

It is an “extended attribute”, not a widget (it
doesn't have a user interface), but it is
described in this section, since it is
configured like widgets.

Further information for the use of “string template” in the tool manageEmail

The tool manageEmail allows to write e-mails which will be sent during the development of the
process. Visualizing e-mails, the electronic mailbox will be checked for possible new e-mails to
visualize the grid.

Input parameters • string ButtonLabel
• one or more blocks for the e-mails definition

◦ string template ToAddresses: recipient’s addresses
◦ string template CcAddresses: carbon copy addresses
◦ string template Subject: e-mail subject
◦ string template Content: e-mail body (HTML)
◦ string template Condition: javascript expression whose

evaluation defines if the e-mail is generated or not
• other optional parameters which include queries or javascript

expressions
• flag ReadOnly: read-only email

output parameters none

The only-read flag is seen as a boolean value; a boolean value (of the process), a positive integer
value or a non empty string are considered true

In the template strings the variables, written in the form {namespace:localname}, are interpreted in
a different way depending on the namespace (if omitted, it defaults to "server").

CMDBuild – Open Source Configuration and Management Database Page 41

Workflow Manual Widgets prompted to use in the user activities of the workflow

client:name
client:name.Id
client:name.Description

Form's name variable; for attributes such as LookUp or Reference you have to
specify, with the bullet list, whether you want the Id or the Description

server:name Process name variable in the previous step

xa:name Variable name of the extended attribute definition, extended as template
excluding the variables with namespace js and cql

user:id
user:name

ID and name of the connected user

group:id
group:name

ID and name of the connected group

js:name Variable name of the extended attribute definition interpreted as a template and
evalued as a javascript code

cql:name.field Variable name of the extended attribute definition interpreted as a template and
evalued carrying out a CQL query, whose field is identified by field

The definition blocks of the e-mails can be written in two ways:

ToAddresses="..."
CcAddresses="..."
Subject="..."
Content="..."

or (if you want to specify more than one e-mail):

ToAddresses1="..."
CcAddresses1="..."
Subject1="..."
Content1="..."
ToAddresses2="..."
CcAddresses2="..."
Subject2="..."
Content2="..."
...

Example 1

ToAddresses="foo@example.com"
Subject="{cql:QueryRequester.Description} - {client:Request}"
QueryRequester="select Description,Email,Office from Employee where Id = {cql:SillyQuery.Id}"
SillyQuery="select Id from Employee where Id={client:Requester}"

Address: The recipient's address is statically completed with the string foo@example.com

Body: Message Body Empty

Subject:

• The variable QueryRequester selects an Employee card which includes the fields
Description, Email and Office; the extracted values are available using for example the
syntax {cql:QueryRequester.Description}, which will be replaced with the field Description
extracted from the variable QueryRequester

• Inside QueryRequester, {cql:SillyQuery.Id} will be replaced with the Id field of the card
returned from the SillyQuery (indeed nested queries are supported), replaced before with
{client:Requester} with the value taken in the form

• {client:Request} of will be completed with the form value

CMDBuild – Open Source Configuration and Management Database Page 42

Workflow Manual Widgets prompted to use in the user activities of the workflow

Example 2

...
Content="The requester, {js:JoinJS}, belonging to the office {cql:QueryRequester.Office_value} requests:

{server:Request}"
JoinJS="{js:FirstJS}+"#"+{js:SecondJS}"
FirstJS="{cql:QueryRequester.Description}.slice(0,{xa:SplitLength})"
SecondJS="{cql:QueryRequester.Description}.slice({xa:SplitLength})"
SplitLength=2
QueryRequester="select Description,Email,Office from Employee where Id = {Requester}"

This is an example of more complexity.

In the body there are three variables which must by replaced:

• {js:JoinJS} values the extended attribute variable like a javascript expression, splitting with
the variables FirstJS and SecondJS, always valued through javascript

• {js:FirstJS} and {js:SecondJS} include both a variable taken from a field of CQL query
QueryRequester and a static variable taken from the ones of the extended attribute

• {cql:QueryRequester...} includes a reference to a server side variable called Requester

• {cql:QueryRequester.Office_value} uses the Office reference description instead of its ID
(that would be just Office)

• {server:Request} takes a server side variable (as Requester), but it also states the
namespace

CMDBuild – Open Source Configuration and Management Database Page 43

Workflow Manual API prompted to use in the automatic activities of the workflow

API prompted to use in the automatic activities of
the workflow
In CMDBuild there are some APIs (Application Programming Interface) which can be used in the
automatic activities of the workflow for the script writing; so it is possible to implement custom
behaviors (manipulation of process variables, card creation and relations in CMDB, e-mail sending,
report creation, etc).

• The condition to send e-mails is always verified since {xa:SplitLength} is constant and the
javascript expression is always true.

General Information

Key words

Process

ProcessId: int
Id of the current process

ProcessClass: String
Class name of the current process

ProcessCode: String
univocal ProcessInstanceId of the current process

Performer

_CurrentUser: ReferenceType
reference to the User that performed the last activity of the current process

_CurrentGroup: ReferenceType
reference to the Role that performed the last activity of the current process

API

cmdb
it identifies the native functions in CMDBuild

Management of CMDBuild items

They concern the CMDBuild specific data; for other data (integer, string, date, float) you can use all
manipulation methods offered by the Java language.

ReferenceType

Methods

getId (): int

CMDBuild – Open Source Configuration and Management Database Page 44

Workflow Manual API prompted to use in the automatic activities of the workflow

it returns the Reference id

getDescription(): String
it returns the Reference description

LookupType

Methods

getId (): int
it returns theLookup id

getType (): String
it returns the type of Lookup

getDescription (): String
it returns the Lookup description

getCode (): String
it returns the Lookup code

CardDescriptor

Methods

getClassName (): String
it returns the Class name for a CardDescriptor variable

getId (): int
it returns the Id name for a CardDescriptor variable

equals (CardDescriptor cardDescriptor): boolean
it compares the CardDescriptor variable with the specified one

Card

Methods

getCode (): String
it returns the Code for a Card variable

getDescription (): String
it returns the Description for a Card variable

has(String name): boolean
it controls the presence of the specified attribute in the Card variable

hasAttribute(String name): boolean
it controls the presence of the specified attribute in the Card variable

get(String name): Object
it returns the specified attribute value of the Card variable

getAttributeNames(): Set<String>
it returnsthe attributes list of the Card variable

getAttributes(): Map<String, Object>

CMDBuild – Open Source Configuration and Management Database Page 45

Workflow Manual API prompted to use in the automatic activities of the workflow

it returns the attributes list and their values of the Card variable. The returned values
respect the CMDBuild types (ReferenceType, LookupType, Date, Integer, ...)

Attachments

Methods

fetch (): Iterable<AttachmentDescriptor>
it returns the attachments list of the Card or of the instantiated process

upload(Attachment... attachments):void
it attaches the documents to the card or to the instantiated process

upload(String name, String description, String category, String url):void
it creates an attachment with name, description and category specified starting from the file with
the specified URL and attaches it to the card or to the instantiated process

selectByName(String... names): SelectedAttachments
it returns the attachments of the card or of the instantiated process with the specified name

selectAll(): SelectedAttachments
it returns all attachments of the card or of the instantiated process

AttachmentDescriptor

Methods

getName(): String
it returns the name of the attachment

getDescription(): String
it returns the attachment description

getCategory(): String
it returns the attachment category

Attachment

Methods

getUrl(): String
it returns the URL of the file

DownloadedReport

Methods

getUrl (): String
it returns the local URL where the report has been saved

equals (DownloadedReport downloadedReport): boolean
it compares the DownloadedReport variable with the specified one

CMDBuild – Open Source Configuration and Management Database Page 46

Workflow Manual API prompted to use in the automatic activities of the workflow

Access methods to CMDBuild

NewCard

Builders

newCard (String className): NewCard
it creates a new Card created in the specified Class of CMDBuild

Modifiers

withCode (String value): NewCard
it adds the Code to the new card created in CMDBuild

withDescription (String value): NewCard
it adds the Description to the new card created in CMDBuild

with (String name, Object value): NewCard
it adds the value specified for the specified attribute to the new card created in CMDBuild

withAttribute (String name, Object value): NewCard
it adds the value specified for the specified attribute to the new card created in CMDBuild

Actions

create (): CardDescriptor
it creates the new card in CMDBuild setting the attributes previously defined

Example:

/*
 * Creation of a new card in the “Employee” class having

 * the following attributes:
 * “Code” = “T1000”

 * “Name” = “James”
 * “Surname” = “Hetfield”

 */
cdNewEmployee = cmdb.newCard(“Employee”)

.withCode(“T1000”)

.with(“Name”, “James”)

.withAttribute(“Surname”, “Hetfield”)

.create();

ExistingCard

Builders

existingCard (String className, int id): ExistingCard
it creates a Card existing in the specified Class having the specified Id to query CMDBuild

existingCard (CardDescriptor cardDescriptor): ExistingCard

CMDBuild – Open Source Configuration and Management Database Page 47

Workflow Manual API prompted to use in the automatic activities of the workflow

it creates an existing Card indicated by the specified CardDescriptor to query CMDBuild

Modifiers

withCode (String value): ExistingCard
it sets the Code for the Card requested to CMDBuild

withDescription(String value): ExistingCard
it sets the Description for the Card requested to CMDBuild

with (String name, Object value): ExistingCard
it sets the specified attribute with the specified value for the Card requested to CMDBuild

withAttribute (String name, Object value): ExistingCard
it sets the specified attribute with the specified value for the Card requested to CMDBuild

withAttachment(String url, String name, String category, String description): ExistingCard
it attaches a file (pointed out through a server local url) to the selected card

by setting the file name, its category and its description

attachments(): ExistingCard
it allows you to access the attachments of the selected card

selectAll(): ExistingCard
it allows you to select all documents of the selected card

selectByName(String name1, String name2, ...): ExistingCard
it allows you to select all documents of the selected card

Actions

update ()
it updates the Card in CMDBuild by setting the attributes previously indicated with the

specified values

delete ()
it deletes (logic delete) the Card from CMDBuild
If the "attachments" modifier has been used, it will delete only the selected files

fetch (): Card
it requests the Card to CMDBuild with the attributes previously indicated. If no modifier

has been used, it requests the whole Card (with all attributes)

fetch (): Iterable<AttachmentDescriptor>
If the "attachments" modifier has been used, the method returns the list of the card
attachments

upload(Attachment attachment, Attachment attachment2,.,)
to be used in the presence of the "attachments" modifier: it attaches one or more files to
the card

upload(Attachment attachment, String description, String category, String url)

CMDBuild – Open Source Configuration and Management Database Page 48

Workflow Manual API prompted to use in the automatic activities of the workflow

to be used in the presence of the "attachments" modifier: it attaches to the card a single
file with specified description and category

download (): Iterable<Attachment>
If the "attachments" modifier has been used, the method returns the selected attachments
of the card

copyTo ()
If the "attachments" modifier has been used, the method copies a selected attachment of
the card into a specified destination

moveTo ()
If the "attachments" modifier has been used, the method moves a selected card
attachment into a specified destination

Examples:

/*
 * It modifies the card previously created in the class “Employee”

 * by setting the following attributes:
 * “Phone” = “754-3010”

 * “Email” = “j.hetfield@somemail.com”
 */

cmdb.existingCard(cdNewEmplyee)
.with(“Phone”, “754-3010”)

.withAttribute(“Email”, “j.hetfield@somemail.com”)

.update();

/*

 * (Logic) delete of the card previously created in the class
 * “Emplyoee”

 */
cmdb.existingCard(cdNewEmplyee)

.delete();

/*
 * Delete of the card attachment that was previuosly

 * created in the “Employee” class
 */

Iterable <AttachmentDescriptor> attachments =

cmdb.existingCard(cdNewEmplyee)
.attachments()

.fetch();

CMDBuild – Open Source Configuration and Management Database Page 49

mailto:j.hetfield@somemail.com

Workflow Manual API prompted to use in the automatic activities of the workflow

/*

 * Delete of the card attachment that was previuosly
 * created in the “Employee” class

 */
cmdb.existingCard(cdNewEmplyee)

.attachments()

.selectByName(String[]{"attachment-name"})

.delete();

NewProcessInstance

Builders

newProcessInstance (String className): NewProcessInstance
it creates a new process instance created in CMDBuild for the specified process

Modifiers

withDescription (String value): NewProcessInstance
it adds the Description to the new card created in CMDBuild

with (String name, Object value): NewProcessInstance
it adds the value specified for the specified attribute to the new process created in

CMDBuild

withAttribute (String name, Object value): NewProcessInstance
it adds the value specified for the specified attribute to the new process created in

CMDBuild

Actions

start (): ProcessInstanceDescriptor
it creates the new process in CMDBuild setting the attributes previously defined, and does

not advance

startAndAdvance (): ProcessInstanceDescriptor
it creates the new process in CMDBuid setting the attributes previously defined, and

advances at the following step

Example:

/*

 * Creation of a new card in the “RequestForChange” class
 * having the following attributes

 * “Requester” = “James Hetfield”
 * “RFCExtendedDescription” = “My printer is broken”

 */
pidNewRequestForChange =
cmdb.newProcessInstance(“RequestForChange”)

CMDBuild – Open Source Configuration and Management Database Page 50

Workflow Manual API prompted to use in the automatic activities of the workflow

.with(“Requester”, “James Hetfield”)

.withAttribute(“RFCExtendedDescription”, “My printer is broken”)

.startAndAdvance();

ExistingProcessInstance

Builders

existingProcessInstance (String processClassName, int processId): ExistingProcessInstance
it creates a process instance existing in the specified process class with the specified Id

Modifiers

with (String name, Object value): ExistingProcessInstance
it sets the specified attribute with the specified value for the process instance

withAttribute (String name, Object value): ExistingProcessInstance
it sets the specified attribute with the specified value for the process instance

withDescription(String value): ExistingProcessInstance
it sets the specified attribute with the specified value for the process instance

attachments(): Attachments
it allows you to access the attachments of the process instance

Actions

abort(): void
it aborts the process instance

advance(): void
it advances a process instance

resume(): void
it resumes the hanging process instance

suspend(): void
it suspends the open process instance

update(): void
it updates the process instance

Example:

/*
* Update of the process instance in the class “Request

* for change” with Id = pid by editing the requester and
* advancing the process at the following step

*/

CMDBuild – Open Source Configuration and Management Database Page 51

Workflow Manual API prompted to use in the automatic activities of the workflow

cmdb.existingProcessInstance(“RequestForChange”, pid)

.with(“Requester”, cdNewEmployee.getId())

.advance();

NewRelation

Builders

newRelation (String domainName) : ExistingProcessInstance
it creates a new relation added in the specified Domain of CMDBuild

Modifiers

withCard1 (String className, int cardId): NewRelation
it sets the card in the source side of the relation

withCard2 (String className, int cardId): NewRelation
it sets the card in the target side of the relation

Actions

create ()
it creates the new relation in CMDBuild among the Cards indicated in the specified

Domain

Example:

/*

 * Creation of a new relation in the “AssetAssignee” domain
 * between a card of the selected “Asset” class,

 * through the "Item" Reference attribute, and
 * the card previously created in the “Employee” class

 */
cmdb.newRelation(“AssetAssignee”)

.withCard1(“Employee”, cdNewEmployee.getId())

.withCard2(“Asset”, Item.getId())

.create();

ExistingRelation

Builders

existingRelation (String domainName): ExistingRelation
it creates an existing relation in the specified Domain of CMDBuild

Modifiers

withCard1 (String className, int cardId): ExistingRelation

CMDBuild – Open Source Configuration and Management Database Page 52

Workflow Manual API prompted to use in the automatic activities of the workflow

it sets IdClass and l'ObjId of the Card from the source side of the relation

withCard2 (String className, int cardId): ExistingRelation
it sets IdClass and l'ObjId of the Card from the target side of the relation

Actions

delete ()
it deletes (logic delete) the relation existing in CMDBuild among the Cards indicated in the

specified Domain

Example:

/*
 * Delete the relation on the “AssetAssignee” domain

 * among the cards previously indicated
 */

cmdb.existingRelation(“AssetAssignee”)
.withCard1(“Employee”, cdNewEmployee.getId())

.withCard2(“Asset”, Item.getId())

.delete();

QueryClass

Builders

queryClass (String className): QueryClass
it creates a query that queries the class specified in CMDBuild

Modifiers

withCode (String value): QueryClass
it sets the Card Code for the filter used to query CMDBuild

withDescription (String value): QueryClass
it sets the Card Description for the filter used to query CMDBuild

with(String name, Object value): QueryClass
it sets the value for the specified attribute of the Card for the filter used to query

CMDBuild

withAttribute(String name, Object value): QueryClass
it sets the value for the specified attribute of the Card for the filter used to query

CMDBuild

Actions

fetch (): List<Card>
it performs the search query on the specified Class of CMDBuild and returns the list of

those Cards that respect the filter previously set

CMDBuild – Open Source Configuration and Management Database Page 53

Workflow Manual API prompted to use in the automatic activities of the workflow

Example:

/*

 * List of the cards of the “Employee” class having
 * the “State” attribute set to 'Active'

 */
Employees = cmdb.queryClass(“Employee”)

.with(“State”, “Active”)

.fetch();

CallFunction

Builders

callFunction (String functionName): CallFunction
it creates a call to a stored procedure previously defined in PostgreSQL

Modifiers

with (String name, Object value): CallFunction
it sets the value of the input parameter specified for the stored procedure

Actions

execute (): Map<String, String>
it performs the stored procedure and returns the list of the output parameters with the

related values

Example:

/*
 * Call of the stored PostgreSQL procedure

 * “cmwf_getImpact”(IN “DeliveryDate” date, IN “Cost” integer,
 * OUT “Impact” character varying)

 * that computes the impact level (attribute of
 * “Impact” process) of an activity on a scale of "High",

 * “Medium” and “Low”, given in input the expected delivery
 * date (process attribute “ExpectedDeliveryDate”) and

 * the price (attribute “ManHoursCost”) expressed in hour/employee
 */

spResultSet = cmdb.callFunction(“cmwf_getImpact”)
.with(“DeliveryDate”, ExpectedDeliveryDate.getTime())

.with(“Cost”, ManHoursCost)

.execute();

Impact = spResultSet.get(“Impact”)

CMDBuild – Open Source Configuration and Management Database Page 54

Workflow Manual API prompted to use in the automatic activities of the workflow

Note: SQL functions - which should be called - must be defined according to CMDBuild standards.
For their definitio,n see the Administrator Manual, section Cart TAB, paragraph “Definition of the
data source (PostgreSQL function)”.

QueryRelations

Builders

queryRelations (CardDescriptor cardDescriptor): ActiveQueryRelations
it creates a query to ask CMDBuild the Cards related to the specified one

queryRelations (String className, int id): ActiveQueryRelations
it creates a query to ask CMDBuild the Cards related to that specified by className

and id

Modifiers

withDomain (String domainName): ActiveQueryRelations
it sets the Domain to perform the query

Actions

fetch (): List<CardDescriptor>
it performs the query on CMDBuild using the parameters previously defined, it returns

the list of the linked Cards

Example:

/*

 * List of “Assets” linked to the “Employee” card indicated
 * by the CardDescriptor cdNewEmployee previously created,

 * through the relation on the domain “AssetAssignee”
 */

assets = cmdb.queryRelation(cdNewEmployee)
.withDomain(“AssetAssignee”)

.fetch();

CreateReport

Builders

createReport(String title, String format): CreateReport
it creates the Report in the specified format (pdf, csv) with the specified Title

Modifiers

with(String name, Object value): CreateReport
it sets the input parameter value specified for the Report

CMDBuild – Open Source Configuration and Management Database Page 55

Workflow Manual API prompted to use in the automatic activities of the workflow

Actions

download(): DownloadedReport
it generates the indicated Report using the parameters previously defined

Example:

/*
 * It generated the Report “DismissedAssets” which shows the list

 * of the abandoned Assets
 */

newReport = cmdb.createReport(“Assigned assets to”)
.download();

NewMail

Builders

newMail (): NewMail
it creates a new e-mail to send

Modifiers

withFrom (String from): NewMail
it sets the sender of the e-mail to send

withTo (String to): NewMail
it sets the recipients of the e-mail to send

withCc (String cc): NewMail
it sets the carbon copy recipients of the e-mail to send

withBcc (String bcc): NewMail
it sets the blind carbon copy recipients of the e-mail to send

withSubject (String subject): NewMail
it sets the subject of the e-mail to send

withContent (String content): NewMail
it sets the text of the e-mail to send

withContentType (String contentType): NewMail
it sets the content MimeType of the e-mail to send, the allowed values are “text/html” or

“text/plain”. If not otherwise specified, the default value is “text/plain”

withAttachment (URL url): NewMail
it sets the url of a document to enclose to the e-mail

withAsynchronousSend (bool boolean): NewMail
 it sends the e-mail asynchronously in spite of the script; in this way any timeout
problem will be avoided, but you will not be able to intervene in case of error by sending the e-
mail

CMDBuild – Open Source Configuration and Management Database Page 56

Workflow Manual API prompted to use in the automatic activities of the workflow

Actions

send ()
it performs the e-mail sending using the previously defined statements

Example:

/*
 * Send a new email

 */
cmdb.newMail()

.withFrom(“fromaddress@somemail.com”)

.withTo(“toaddress@somemail.com”)

.withCc(“ccaddress@somemail.com”)

.withSubject(“Mail subject”)

.withContent(“Mail content”)

.send();

NewMailQueue

Builders

newMailQueue(): NewMailQueue
it creates a new email queue

Methods

newMail(): QueueableNewMail
it adds a new email to the queue

sendAll(): void
it sends all emails from the queue

/*

 * Send a new email

 */

cmdb.newMailQueue()

.newMail()

.withFrom(“fromaddress@somemail.com”)

.withTo(“toaddress@somemail.com”)

.withCc(“ccaddress@somemail.com”)

.withSubject(“Mail subject”)

.withContent(“Mail content”)

.add()

CMDBuild – Open Source Configuration and Management Database Page 57

mailto:ccaddress@somemail.com
mailto:toaddress@somemail.com
mailto:fromaddress@somemail.com
mailto:ccaddress@somemail.com
mailto:toaddress@somemail.com
mailto:fromaddress@somemail.com

Workflow Manual API prompted to use in the automatic activities of the workflow

.sendAll();

Methods for types conversion

ReferenceType

Methods

referenceTypeFrom(Card card): ReferenceType
it returns the ReferenceType item related to the specified Card

referenceTypeFrom(CardDescriptor cardDescriptor): ReferenceType
it retuns the ReferenceType item related to the specified CardDescriptor

referenceTypeFrom(int id): ReferenceType
it returns the ReferenceType item related to the card with the specified Id

Example:

/*

 * Set the “Requester” process attribute Reference
 * type, given the “cdNewEmployee” CardDescriptor

 * previously created
 */

Requester = cmdb.referenceTypeFrom(cdNewEmployee);

LookupType

Methods

selectLookupById (int id): LookupType
it returns the LookupType item with the specified Id

selectLookupByCode (String type, String code): LookupType
it returns the LookupType item with specified Type and Code

selectLookupByDescription (String type, String description): LookupType
it returns the LookupType item with specified Type and Description

Example:

/* Set the "State" process attribute Lookup type having:
 * “Type” = “Employee state”

 * “Code” = “ACTIVE”
 */

State = cmdb.selectLookupByCode(“Employee state”, “ACTIVE”);

CardDescriptor

Methods

cardDescriptorFrom(ReferenceType reference): CardDescriptor
it returns the CardDescriptor of the specified card through the specified ReferenceType

item

CMDBuild – Open Source Configuration and Management Database Page 58

Workflow Manual API prompted to use in the automatic activities of the workflow

Example:

/*
 * Get the CardDescriptor related to the "Requester"

 * process attribute Reference type
*/

cdSelectedEmployee = cmdb.cardDescriptorFrom(Requester);

Card

Methods

cardFrom(ReferenceType reference): Card
it returns the Card item of the specified card through the specified ReferenceType item

Example:

/*
 * Get the complete Card related to the "Requester"

 * process attribute Reference type
 */

selectedEmployee = cmdb.cardFrom(Requester);

CMDBuild – Open Source Configuration and Management Database Page 59

Workflow Manual Appendix: Documentation to use TWS 2.3

Appendix: Documentation to use TWS 2.3

Foreword

In appendix you will find the specified technical documentation of the workflow system used until
CMDBuild 1.5, whose compatibility is maintained also in CMDBuild 2.0; as soon as possible it will
be discarded.

We must remember that in CMDBuild 2.0 there is the possibility to work - alternatively - both with
Together Workflow Server 2.3 (the version used until CMDBuild 1.5, based on XPDL 1.0) and with
the new version Together Workflow Server 4.4 (based on XPDL 2.0).

It is advisable to migrate in a short time, since that double compatibility will be maintained for a
limited period.

Automatic methods used in the workflow
In order to use Together Workflow Server 2.3 (passed by the system based on Together Workflow
Server 4.4), CMDBuild provides some methods (“tools”), which can be used inside the "tool
activities” (automatic activities) in order to perform the various operation typologies:

• methods for the manipulation of the variables: conversion among data typologies, strings
connection, etc.

• methods for the flow control: iterator, process suspension, process reboot

• access methods to CMDB: create a new card, read or change attribute, create relation, etc.

• external methods: sending e-mails, reading system time, etc.

Methods for the manipulation of the variables

Tool Description Input parameters Output
parameters

Notes

addDays It adds to the
specified date the
indicated number
of days

InputDate date
days integer

OutputDate
date

boolToString It converts a
boolean variable to
a string

InputBool boolean OutputString
string

boolCopy It copies the value
of a boolean
variable into
another boolean
one

From boolean To boolean

clearIterator It resets the iterator RefArray
references
HasNext boolean
CurrentIndex
integer

RefArray
references
HasNext
boolean
CurrentIndex
integer

RefArray is set to null,
CurrentIndex is set to 0 and
HasNext to false

clearLookup It resets the value Lookup lookup The value of the "Id"

CMDBuild – Open Source Configuration and Management Database Page 60

Workflow Manual Appendix: Documentation to use TWS 2.3

of a Lookup
variable

attribute is set to -1

clearReference It resets the value
of a Reference
variable

Ref reference The value of the "Id"
attribute is set to -1

concat
concat3 / concat4
/ ... / concat8

It concatenates two
or more strings

InputString1 string
InputString2 string
...
InputStringn string

OutputString
string

createReferenceObj It creates a
reference variable
and initializes it

ClassName string
ObjId integer
Description string

OutRef
reference

The variable is initialized
with the values read by the
attributes “ClassName”,
“ObjId” and “Description” of
the specified card

dateToString It converts a date
variable into a
string

InputDate date OutputString
string

floatToString It converts a float
variable into a
string

InputFloat float OutputString
string

floatCopy It copies the value
of a float variable
into another float
variable

From float To float

getReferenceId It extracts the “Id”
attribute from a
reference variable

Ref reference CardId integer

getReferenceClassId It extracts the
“ClassId” attribute
from a reference
variable

Ref reference ClassId integer

getLookupDescription It extracts the
“Description”
attribute from a
lookup variable

Lookup lookup Description
string

getLookupId It extracts the “Id”
attribute from a
lookup variable

Lookup lookup Id Integer

getLookupCode It extracts the
“Code” attribute
from a lookup
variable

Lookup lookup Code String

getReferenceDescri
ption

It extracts the
“Description”
attribute from a
reference variable

Ref reference Description
string

getReferenceFrom
Array

It extracts the
specified

RefArray
references

OutRef
reference

If the array is null or the
index is higher than its

CMDBuild – Open Source Configuration and Management Database Page 61

Workflow Manual Appendix: Documentation to use TWS 2.3

Reference from the
specified array

Index integer dimension, it returns “null”

intToString It converts an
integer variable into
a string

InputInt integer OutputString
string

intCopy It copies the value
of an integer
variable into
another integer
variable

From integer To integer

lookupToString It converts the "Id"
field of the lookup
variable into a
string

InputLookup
lookup

OutputString
string

nextInt It increases the
specified integer
variable

InputInt integer InputInt integer

referenceToString It converts the “Id”
field of the
reference variable
into a string

InputReference
reference

OutputString
string

stringToDate It converts a string
variable into a date

InputString string OutputDate
date

It accepts as input formats
YY/MM/dd or YY/mm/dd
HH:mm:ss

stringCopy It copies the value
of a string variable
into another string
variable

From string To string

dateCopy It copies the value
of a date variable
into another date
variable

From date To date

stringToBool It converts a string
variable into a
boolean value

From string To boolean It accepts as input the true
or false strings

stringToInt It converts a string
variable into an
integer

From string To integer In input it accepts the
representation of an integer
number in the shape of
string

stringToFloat It converts a string
variable into a float

From string To float In input it accepts the
representation of a float in
the shape of string

Methods for the flow control

Tool Description Input parameters Output
parameters

Notes

nextRef It increases the RefArray HasNext RefArray is a reference

CMDBuild – Open Source Configuration and Management Database Page 62

Workflow Manual Appendix: Documentation to use TWS 2.3

iterator on a
reference array

references
CurrentIndex
integer

boolean
CurrentIndex
integer
CurrentValue
reference

array, CurrentValue is the
reference corresponding to
the current index

resetIterator It resets the
iterators

RefArray
references

HasNext
boolean
CurrentIndex
integer

CurrentIndex is set to 0,
HasNext is true if the array
is not empty

resumeProcess It reboots the
specified process

ProcessInstanceId
string
Complete integer

The status of the specified
process must be
“Suspended”

If “Complete” takes on the
value 1, the process steps
forward

suspendProcess It suspends the
specified process

ProcessInstanceId
string

The constant “CURRENT”
can be used to indicate the
current process

The process is suspended
immediately before the
following manual activity

voidApp Null tool

Access methods to CMDB

Tool Description Input parameters Output
parameters

Notes

createCard It creates a new
card and returns
the ”Id”

ClassName string
CardCode string
CardDescription
string

CardId integer The method sets only the
basic attributes "Code" and
"Description"

In order to set the other
ones, you have to use the
updateAttribute tool or
define a createCard
metatool

createCardRef It creates a new
card and returns
the reference

ClassName string
CardCode string
CardDescription
string

CardReference
reference

The method sets only the
basic attributes "Code" and
"Description"

In order to set the other
ones, you have to use the
updateAttribute tool or
define a createCard
metatool

createRelation It creates a relation
between two cards

DomainName
string
ClassName1 string
ClassName2 string
ObjId1 integer
ObjId2 integer

Done boolean

CMDBuild – Open Source Configuration and Management Database Page 63

Workflow Manual Appendix: Documentation to use TWS 2.3

createRelation1Ref It creates a relation
between two cards,
the first of them is
specified by
reference

DomainName
string
ObjReference1
reference
ClassName2 string
ObjId2 integer

Done boolean

createRelation2Ref It creates a relation
between two cards,
the second of them
is indicated by
reference

DomainName
string
ClassName1 string
ObjId1 integer
ObjReference2
reference

Done boolean

createRelationRefs It creates a relation
between two cards,
both specified by
reference

DomainName
string
ObjReference1
reference
ObjReference2
reference

Done boolean

deleteRelation It removes a
relation between
two cards

DomainName
string
ClassName1 string
ClassName2 string
ObjId1 integer
ObjId2 integer

Done boolean

deleteRelationByR
eference

It deletes a relation
between two cards,
both specified by
reference

DomainName
string
ObjReference1
reference
ObjReference2
reference

Done boolean

selectAttribute It reads an attribute
of the specified
card

ClassName string
AttributeName
string
ObjId integer

AttributeValue
string

The returned value is
always represented by a
string

selectAttributeFrom
Reference

It reads an attribute
of the specified
card, specified by
reference

ObjReference
reference
AttributeName
string

AttributeValue
string

The returned value is
always represented by a
string

selectLookup It reads the
description of a
Lookup entry,
specified by type
and “Id”

Type string
LookupId integer

LookupDescription
string

selectLookupById It returns a Lookup
entry, specified by
“Id”

LookupId integer Lookup lookup

selectLookupByTy
peDesc

It returns a Lookup
entry, specified by
type and
description

Type string
Description string

Lookup lookup

selectLookupByTy It returns a Lookup Type string Lookup lookup

CMDBuild – Open Source Configuration and Management Database Page 64

Workflow Manual Appendix: Documentation to use TWS 2.3

peCode entry, specified by
type and code

Code string

selectReferenceBy
Code

It returns a
reference item
corresponding to
the card specified
by code

ClassName string
Code string

OutRef
reference

selectReferenceBy
CustomAttribute

It returns a
reference item
corresponding to
the indicated card
through a generic
attribute

ClassName string
AttributeName
string
AttributeValue
string

OutRef
reference

selectReferenceBy
Reference

It returns a
reference item
corresponding to a
reference attribute
existing in the card
specified by
reference

ObjReference
reference
AttributeName
string

OutRef
reference

selectRelations It returns on a
specific domain an
array of references
corresponding to
the cards related to
the one given by
the specified id and
class

ClassName string
CardId integer
DomainName
string

RefArray
relations

selectRelationsByR
eference

It returns on a
specific domain an
array of references
corresponding to
the cards related to
the one given by
the specified
reference

ClassName string
CardId integer
DomainName
string

RefArray
relations

updateAttribute It modifies a card ClassName string
AttributeName
string
ObjId integer
AttributeValue
string

Done boolean The method edits only the
specified attribute

In order to edit more
attributes, you have to
define an updateCard
metatool

updateAttributeRef It edits a card
specified by
reference

ObjRef reference
AttributeName
string
AttributeValue
string

Done boolean

CMDBuild – Open Source Configuration and Management Database Page 65

Workflow Manual Appendix: Documentation to use TWS 2.3

External methods

Tool Description Input parameters Output
parameters

Notes

getCurrentTimestamp It returns the
system date and
time

TheDate date

getCurrentGroupR
eference

It returns a
reference variable
corresponding to
the current user
group

GroupRef
reference

The returned item
corresponds to the current
group card in the CMDB
"Role" table

getCurrentUserRe
ference

It returns a
reference variable
corresponding to
the current user

UserRef
reference

The returned item
corresponds to the current
user card in the CMDB
"Role" table

getReportFullUrl It returns the link to
the report created
with the extended
attribute
createReport

ReportUrl string ReportUrl string

sendMail It sends an e-mail FromAddresses
string
ToAddresses
string
CCAddresses
string
BCCAddresses
string
Subject string
Content string
UrlAttachments
string
MimeType string

The tool provides that Shark
parameters related to the e-
mail sending are correctly
configured

Parameters From, To and
Attach can include more
values concatenated with “,”
Parameters CCAddresses,
BCCAddresses and
UrlAttachments can be set
by an empty string
MimeType can take the
values “text/html” or
“text/plain”

CMDBuild – Open Source Configuration and Management Database Page 66

Workflow Manual Appendix: Documentation to use TWS 2.3

Template automatic methods usable in the workflow
In order to use Together Workflow Server 2.3 (passed by the system based on Together Workflow
Server 4.4), CMDBuild provides some templates of automatic methods (meta-tools), used for the
definition of tools.

For the creation of new “tools”, custom CMDBuild provides the following steps:

• creation of a new “Application” with TWE Together Workflow Editor 4.4 (you can access the
list from the process features), with the proper button “Create new element”

• the completion of the “Application” definition by clicking on the new row added to the list
and setting the following parameters:

▫ Id = name for the new “tool”

▫ Name = you can set the same value chosen in the previous field

▫ Formal parameters = adding as many input and output parameters as provided in the
tool (as you can see in the following table)

▫ Extended attribute “ToolAgentClass”

▫ further specific extended attributes in the meta-tool (as you can see in the following table)

Template type Description Input parameters Output
parameters

Notes

createCard Card creation in the
CMDB

Attributes list set in
the new card

or

ClassName string
List of input
parameters
provided by the
function

CardReference
reference

It returns the id of the
created card
The second specification of
the input parameters can be
used if you exclude
ClassName from the
external attribute list (see
the following table)

createReport Running a report List of input
parameters
provided by the
report

ReportURL
string

The returned URL can be
used to enclose the report
to an e-mail with the tool
sendMail

executeFunction Execute
PostgreSQL
functions

List of input
parameters
provided by the
function

List of output
parameters
provided by the
function

There must be at least one
input parameter and one
output parameter, even if
they are fake

startProcess Instance initiation
of another process

Attributes list set
during the process
initiation

ProcessInstanceId
string

It returns the process
instance name (string type)

updateCard Card update in the
CMDB

ClassName string
ObjId integer
Attributes list
updated in the card

or

Done boolean

CMDBuild – Open Source Configuration and Management Database Page 67

Workflow Manual Appendix: Documentation to use TWS 2.3

ObjRef reference
List of input
parameters
provided by the
function

updateProcess Save or progress of
another process
instance

ProcessInstanceId
string
Attributes list to set

Done boolean

For a better readability, the following table shows separately the ToolAgent indication and other
possible attributes that must be specified as TWE in the metatool definition.

All values of the attributes are string type.

Template type Metatool attribute Metatool value

createCard ToolAgentClass
ClassName

org.cmdbuild.shark.toolagent.CreateCardToolAgent
[Class Name]

createReport ToolAgentClass
Type
Code
Format

org.cmdbuild.shark.toolagent.CreateReportToolAgent
custom
[Report code]
pdf or csv

executeFunction ToolAgentClass
Procedure
 or
CursorProcedure

org.cmdbuild.shark.toolagent.ExecuteStoredProcedureToolAgent
[PostgreSQL function name with return single value]

[PostgreSQL function name with return multiple value]

startProcess ToolAgentClass
ProcessClass
Complete

org.cmdbuild.shark.toolagent.ProcessStartToolAgent
[Class Name]
1 (to advance the process to the following activity)
or
0 (to stop the process on the first activity)

updateCard ToolAgentClass org.cmdbuild.shark.toolagent.UpdateAttributeToolAgent

updateProcess ToolAgentClass
ProcessClass
Complete

org.cmdbuild.shark.toolagent.ProcessUpdateToolAgent
[Class Name]
1 (to advance the process to the following activity)
or
0 (to stop the process on the first activity)
If the process is "Suspended", the resumeProcess method must
be carried out in advance.

CMDBuild – Open Source Configuration and Management Database Page 68

Workflow Manual APPENDIX: Glossary

APPENDIX: Glossary
ATTACHMENT

An attachment is a file associated to a card.

In order to manage the attachments, CMDBuild uses in embedded mode any document system
which is compatible with the standard protocol CMIS (or the DMS Alfresco until the version 3
through its native webservice).

The management of the attachments supports the versioning of those files that have been uploaded
a few times, with automatic numbering.

WORKFLOW STEP

"Activity" means one of the steps of which the process consists.

An activity has a name, an executor, a type, possible attributes and methods with statements
(CMDBuild API) to be executed.

A process instance is a single process that has been activated automatically by the application or
manually by an operator.

See also: Process

ATTRIBUTE

The term refers to an attribute of a CMDBuild class.

CMDBuild allows you to create new attributes (in classes and domains) or edit existing ones.

For example, in "supplier" class the attributes are: name, address, phone number, etc..

Each attribute corresponds, in the Management Module, to a form field and to a column in the
database.

See also: Class, Domain, Report, Superclass, Attribute Type

BIM

Method with the aim to support the whole life cycle of a building: from its construction, use and
maintenance, to its demolition, if any.

The BIM method (Building Information Modeling) is supported by several IT programs that can
interact through an open format for data exchange, called IFC (Industry Foundation Classes).

See also: GIS

CI

We define CI (Configuration Item) each item that provides IT service to the user and has a
sufficient detail level for its technical management.

CI examples include: server, workstation, software, operating system, printer, etc.

See also: Configuration

CLASS

A Class is a complex data type having a set of attributes that describe that kind of data.

A Class models an object that has to be managed in the CMDB, such as a computer, a software, a
service provider, etc.

CMDBuild – Open Source Configuration and Management Database Page 69

Workflow Manual APPENDIX: Glossary

CMDBuild allows the administrator - with the Administration Module - to define new classes or
delete / edit existing ones.

Classes are represented by cards and, in the database, by tables automatically created at the
definition time.

See also: Card, Attribute

CONFIGURATION

The configuration management process is designed to keep updated and available to other
processes the items (CI) information, their relations and their history.

It is one of the major ITIL processes managed by the application.

See also: CI, ITIL

DASHBOARD

In CMDBuild, a dashboard corresponds to a collection of different charts, in this way you can
immediately hold in evidence some key parameters (KPI) related to a particular management
aspect of the IT service.

See also: Report

DATABASE

The term refers to a structured collection of information, hosted on a server, as well as utility
software that handle this information for tasks such as initialization, allocation, optimization,
backup, etc..

CMDBuild relies on PostgreSQL, the most powerful, reliable, professional and open source
database , and uses its advanced features and object-oriented structure.

DOMAIN

A domain is a relation between two classes.

A domain has a name, two descriptions (direct and inverse), classes codes, cardinality and
attributes.

The system administrator, using the Administration Module, is able to define new domains or
delete / edit existing ones.

It is possible to define custom attributes for each domain.

See also: Class, Relation

DATA FILTER

A data filter is a restriction of the list of those elements contained in a class, obtained by specifying
boolean conditions (equal, not equal, contains, begins with, etc.) on those possible values that can
be accepted by every class attribute.

Data filters can be defined and used exceptionally, otherwise they can be stored by the operator
and then recalled (by the same operator or by operators of other user groups, which get the
permission to use them by the system Administrator)

See also: Class, View

GIS

A GIS is a system able to produce, manage and analyse spatial data by associating geographic
elements to one or more alphanumeric descriptions.

CMDBuild – Open Source Configuration and Management Database Page 70

Workflow Manual APPENDIX: Glossary

GIS functionalities in CMDBuild allow you to create geometric attributes (in addition to standard
attributes) that represent, on plans / maps, markers position (assets), polylines (cable lines) and
polygons (floors, rooms, etc.).

See also: BIM

GUI FRAMEWORK

It is a user interface you can completely customise. It is advised to supply a simplified access to
the application. It can be issued onto any webportals and can be used with CMDBuild through the
standard REST webservice.

See also: Mobile, Webservice

ITIL

"Best practices" system that established a "standard de facto"; it is a nonproprietary system for the
management of IT services, following a process-oriented schema (Information Technology
Infrastructure Library).

ITIL processes include: Service Support, Incident Management, Problem Management, Change
Management, Configuration Management and Release Management.

For each process, ITIL handles description, basic components, criteria and tools for quality
management, roles and responsibilities of the resources involved, integration points with other
processes (to avoid duplications and inefficiencies).

See also: Configuration

LOOKUP

The term "Lookup" refers to a pair of values (Code, Description) set by the administrator in the
Administration Module.

These values are used to bind the user's choice (at the form filling time) to one of the preset
values.

With the Administration Module it is possible to define new "LookUp" tables according to
organization needs.

MOBILE

It is a user interface for mobile tools (smartphones and tablets). It is implemented as multi-platform
app (iOS, Android) and can be used with the CMDB through the REST webservice.

See also: GUI Framework, Webservice

PROCESS

The term "process" (or workflow) refers to a sequence of steps that realize an action.

Each process will take place on specific assets and will be performed by specific users.

A process is activated by starting a new process (filling related form) and ends when the last
workflow step is executed.

See also: Workflow step

RELATION

A relation is a link between two CMDBuild cards or, in other words, an instance of a given domain.

A relation is defined by a pair of unique card identifiers, a domain and attributes (if any).

CMDBuild allows users, through the Management Module, to define new relations among the

CMDBuild – Open Source Configuration and Management Database Page 71

Workflow Manual APPENDIX: Glossary

cards stored in the database.

See also: Class, Domain

REPORT

The term refers to a document (PDF or CSV) containing information extracted from one or more
classes and related domains.

CMDBuild users run reports by using the Management Module; reports definitions are stored in the
database.

See also: Class, Domain, Database

CARD

The term "card" refers to an element stored in a class.

A card is defined by a set of values, i.e. the attributes defined for its class.

CMDBuild users, through the Management Module, are able to store new cards and update /
delete existing ones.

Card information is stored in the database and, more exactly, in the table/columns created for that
class (Administration Module).

See also: Class, Attribute

SUPERCLASS

A superclass is an abstract class used to define attributes shared between classes. From the
abstract class you can derive real classes that contain data and include both shared attributes
(specified in the superclass) and specific subclass attributes.

For example, you can define the superclass "Computer" with some basic attributes (RAM, HD,
etc.) and then define derived subclasses "Desktop", "Notebook", "Server", each one with some
specific attributes.

See also: Class, Attribute

ATTRIBUTE TYPE

Each attribute has a data type that represents attribute information and management.

The attribute type is defined using the Administration Module and can be modified within some
limitations, depending on the data already stored in the system.

CMDBuild manages the following attribute types: "Boolean", "Date", "Decimal", "Double", "Inet" (IP
address), "Integer", "Lookup" (lists set in "Settings" / "LookUp"), "Reference" (foreign key), "String",
"Text", "Timestamp".

See also: Attribute

VIEW

A view not only includes the whole content of a CMDB class, it is a group of cards defined in a
logical way.

In particular, a view can be defined in CMDBuild by applying a filter to a class (so it will contain a
reduced set of the same rows) or specifying an SQL function which extracts attributes from one or
more related classes.

The first view type maintains all functionalities available for a class, the second one allows the sole
display and search with fast filter.

CMDBuild – Open Source Configuration and Management Database Page 72

Workflow Manual APPENDIX: Glossary

See also: Class, Filter

WEBSERVICE

A webservice is an interface that describes a collection of methods, available over a network and
working using XML messages.

With webservices, an application allows other applications to interact with its methods.

CMDBuild includes a SOAP and a REST webservice.

WIDGET

A widget is a component of a GUI that improves user interaction with the application.

CMDBuild uses widgets (presented as "buttons") that can be placed on cards or processes. The
buttons open popup windows that allow you to insert additional information, and then display the
output of the selected function.

CMDBuild – Open Source Configuration and Management Database Page 73

	Introduction
	CMDBuild modules
	Available documentation

	Description of the workflow system
	General Information
	Purposes
	Used tools
	Terminology
	Refactoring 2.0

	Implementation method
	Workflows as special classes
	Building the workflow
	Defining a new process
	Initiation and progress of a process

	Interaction of the workflow with external tools
	General Information
	Start of a process from an intranet portal via CMDBuild GUI Framework

	Example of configuration of a new process
	General Information
	Description of the RfC process used as example
	Phase 1 – Items creation in CMDBuild
	Phase 2 – Configuration of the flow with TWE
	Phase 3 – Importation of the XPDL file in CMDBuild
	Phase 4 – Implementation of the process from CMDBuild

	Widgets prompted to use in the user activities of the workflow
	Widget list
	Further information for the use of “string template” in the tool manageEmail
	Example 1
	Example 2

	API prompted to use in the automatic activities of the workflow
	General Information
	Key words
	Management of CMDBuild items
	ReferenceType
	LookupType
	CardDescriptor
	Card
	Attachments
	AttachmentDescriptor
	Attachment
	DownloadedReport

	Access methods to CMDBuild
	NewCard
	ExistingCard
	NewProcessInstance
	ExistingProcessInstance
	NewRelation
	ExistingRelation
	QueryClass
	CallFunction
	QueryRelations
	CreateReport
	NewMail
	NewMailQueue

	Methods for types conversion
	ReferenceType
	LookupType
	CardDescriptor
	Card

	Appendix: Documentation to use TWS 2.3
	Foreword
	Automatic methods used in the workflow
	Methods for the manipulation of the variables
	Methods for the flow control
	External methods

	Template automatic methods usable in the workflow

	APPENDIX: Glossary
	ATTACHMENT
	WORKFLOW STEP
	ATTRIBUTE
	BIM
	CI
	CLASS
	CONFIGURATION
	DASHBOARD
	DATABASE
	DOMAIN
	DATA FILTER
	GIS
	GUI FRAMEWORK
	ITIL
	LOOKUP
	MOBILE
	PROCESS
	RELATION
	REPORT
	CARD
	SUPERCLASS
	ATTRIBUTE TYPE
	VIEW
	WEBSERVICE
	WIDGET

