
» Workflow Manual

January 2022

Author Tecnoteca srl

www.tecnoteca.com

 ENG

www.cmdbuild.org

Version

3.4

Overview Manual

No part of this document may be reproduced, in whole or in part, without the express written permission
of Tecnoteca s.r.l.

CMDBuild ® uses many great technologies from the open source community:
PostgreSQL, Apache, Tomcat, Eclipse, Ext JS, JasperStudio, Enhydra Shark, TWE, OCS Inventory,
Liferay, Alfresco, GeoServer, OpenLayers, Quartz, BiMserver, Xeokit.
We are thankful for the great contributions that led to the creation of these products.

CMDBuild ® is a project of Tecnoteca Srl. Tecnoteca is
responsible of software design and development, it's the official
maintainer and has registered the CMDBuild logo.

CMDBuild ® is released under AGPL open source license (http://www.gnu.org/licenses/agpl-3.0.html)

CMDBuild ® is a registered trademark of Tecnoteca Srl.

Everytime the CMDBuild® logo is used, the official maintainer "Tecnoteca srl" must be mentioned; in
addition, there must be a link to the official website:

 http://www.cmdbuild.org.

CMDBuild ® logo:

• cannot be modified (color, proportion, shape, font) in any way, and cannot be integrated into
other logos

• cannot be used as a corporate logo, nor the company that uses it may appear as author / owner
/ maintainer of the project

• cannot be removed from the application, and in particular from the header at the top of each
page

The official website is http://www.cmdbuild.org

CMDBuild – Open Source Configuration and Management Database Page 2

http://www.cmdbuild.org/

Overview Manual

Contents
1. Introduction..4

1.1. The application... 4
1.2. Official website.. 5
1.3. CMDBuild modules... 5
1.4. Available manuals... 5
1.5. Applications based on CMDBuild..6

2. Description of the workflow system..7
2.1. General Information.. 7
2.2. Purposes... 7
2.3. Used tools... 7
2.4. Terminology.. 8

3. Implementation method..10
3.1. Workflows as special classes...10
3.2. Building the workflow.. 10
3.3. Defining a new process... 11
3.4. Initiation and progress of a process..12

4. Widgets prompted to use in the user activities of the workflow...14
4.1. Widget list... 14

4.1.1. Further information for the use of “string template” in the tool manageEmail..17
4.1.2. Example 1.. 18
4.1.3. Example 2.. 18

5. API prompted to use in the automatic activities of the workflow...20
5.1. Key words... 20
5.2. Management of CMDBuild items..20
5.3. Access methods to CMDBuild..24

5.3.1. NewCard.. 24
5.3.2. ExistingCard... 24
5.3.3. NewProcessInstance...27
5.3.4. ExistingProcessInstance..29
5.3.5. NewRelation... 30
5.3.6. ExistingRelation...30
5.3.7. QueryClass.. 31
5.3.8. QueryLookup... 32
5.3.9. CallFunction... 32
5.3.10. QueryRelations..33
5.3.11. CreateReport...34
5.3.12. NewMail... 34

5.4. Methods for types conversion...36
5.4.1. ReferenceType..36
5.4.2. LookupType... 36
5.4.3. CardDescriptor...37
5.4.4. Card... 37

6. Appendix: Glossary..38

CMDBuild – Open Source Configuration and Management Database Page 3

Overview Manual 1. Introduction

1. Introduction

1.1. The application
CMDBuild is an open source web environment for the configuration of custom applications for the
Asset Management.

On the one hand, it provides native mechanisms for the administrator, implemented in a "core"
code which has been kept separated from the business logic, so that the system can be configured
with all its features.

On the other hand, it generates dynamically a web interface for the operators, so that they can
keep the asset situation under control and always know their composition, detachment, functional
relations and how they update, in order to manage their life-cycle in a comprehensive way.

The system administrator can build and extend his/her own CMDB (hence the name of the project),
modeling the CMDB according to the company needs; a proper interface allows you to
progressively add new classes of items, new attributes and new relations. You can also define
filters, "views" and access permissions limited to rows and columns of every class.

Using external visual editors, the administrator can design workflows, import them into CMDBuild
and put them at operators' disposal, so that they can execute them according to the configured
automatisms.

In a similar way, using external visual editors, the administrator can design various reports on
CMDB data (printouts, graphs, barcode labels, etc.), import them into the system and put them at
operators' disposal.

The administrator can also configure some dashboards made up of charts which immediately show the
situation of some indicators in the current system (KPI).

A task manager included in the user interface of the Administration Module allows you to schedule
various operations (process starts, e-mail receiving and sending, connector executions) and to control
CMDB data (synchronous and asynchronous events). Based on their findings, it sends notifications,
starts workflows and executes scripts.

The interoperability with other systems is managed through the CMDBuild BUS Service, called
WaterWAY.

Thanks to document management systems that support the CMIS standard (Content Management
Interoperability Services) - among which there is also the open source solution Alfresco - you will
be able to attach documents, pictures, videos and other files.

There is also a Scheduling, which can be supplied both automatically when filling in a data card
and manually. This Scheduling will manage single or recurring deadlines related, for example, to
certifications, warranties, contracts with customers and suppliers, administrative procedures, etc.

Moreover, you can use GIS features to georeference and display assets on a geographical map
(external map services) and / or on vector maps (local GeoServer and spatial database PostGIS)
and BIM features to view 3D models (IFC format).

The system also includes a REST webservice, so that CMDBuild users can implement custom
interoperability solutions with external systems.

Furthermore, CMDBuild includes two external frameworks:

• the Advanced Connector CMDBuild, which is written in Java and can be configured in

CMDBuild – Open Source Configuration and Management Database Page 4

Overview Manual 1. Introduction

Groovy: it helps the implementation of connectors with external data sources, i.e automatic
inventory systems, virtualization or monitoring ones (supplied with non-open source license
to the users that subscribe the annual Subscription with Tecnoteca)

• the GUI Framework CMDBuild, which helps the implementation of additional graphical
interfaces, i.e. web pages (simplified for non technicians) that have to be published on
external portals and that are able to interact with the CMDB through the REST webservice

CMDBuild includes a mobile interface (for smartphone and tablet). It is implemented as multi-
platform app (iOS, Android) and is able to interact with the CMDB through the REST webservice
(supplied with non-open source license to the users that subscribe the annual Subscription with
Tecnoteca).

CMDBuild is an enterprise system: server-side Java, web Ajax GUI, SOA architecture (Service
Oriented Architecture), based on webservice and implemented by using the best open source
technologies and following the sector standards.

CMDBuild is an ever-evolving system, which has been released for the first time in 2006 and
updated several times a year in order to offer more features and to support new technologies.

1.2. Official website
CMDBuild has a dedicated website: http://www.cmdbuild.org

The website gathers a lot of documents on technical and functional features of the project:
brochures, slides, manuals (see next paragraph), testimonials, case histories, newsletters, forums.

1.3. CMDBuild modules
The CMDBuild application includes two main modules:

• the Administration Module for the initial definition and the next changes of the data model
and the base configuration (relation classes and typologies, users and authorization,
dashboards, upload report and workflows, options and parameters)

• the Management Module, used to manage cards and relations, add attachments, run
workflow processes, visualize dashboards and execute reports

The Administration Module is available only to the users with the "administrator" role; the
Management Module is used by all the users who view and edit data.

1.4. Available manuals
This manual is for those who need certain first introductory information on CMDBuild and who are
interested in knowing the general philosophy of the project.

You can find all the manuals on the official website (http://www.cmdbuild.org):

• system overview ("Overview Manual")

• system usage for operators (“User Manual”)

• system administration ("Administrator Manual")

• installation and system management ("Technical Manual")

• webservice details and configuration (“Webservice Manual”)

CMDBuild – Open Source Configuration and Management Database Page 5

Overview Manual 1. Introduction

1.5. Applications based on CMDBuild
Tecnoteca has used the CMDBuild environment in order to implement two different pre-configured
solutions:

• CMDBuild READY2USE, for the management of assets and IT services, oriented to internal IT
infrastructures or services for external clients (www.cmdbuildready2use.org) according to the
ITIL best practice (Information Technology Infrastructure Library)

• openMAINT, for the inventory management of assets, properties and related maintenance
activities (www.openmaint.org)

Both applications are released with open source license, except for certain external components
(data sync connectors, Self-Service portal, mobile APP, etc.), that are reserved to the users that
subscribe the annual Subscription with Tecnoteca.

CMDBuild – Open Source Configuration and Management Database Page 6

Overview Manual 2. Description of the workflow system

2. Description of the workflow system

2.1. General Information
One important added value of CMDBuild is the possibility of defining processes for operators to
execute the management activities.

A process includes an activity sequence, carried out by operators and/or computer applications,
every application represents an operation that has to be carried out within the process, related, in
this case, to the IT asset management with quality criteria.

Given the amount of processes options, organizational procedures and flexibility pursued by the
CMDBuild project, we chose not to implement a series of rigid and predefined processes, but a
generic workflow engine to model processes case-by-case.

In the first part of this document you will find general concepts and basic mechanisms implemented
in the system.

In the second part, you will find the technical tools available for the configuration of a workflow, for
example the widgets definition and the description of API functions which can be used in the
scripts for the definition of automatism, performed in the workflow.

2.2. Purposes
The workflow management system provides:

• a standard interface for users

• a secure update of the CMDB

• a tool to monitor provided services

• a repository for activities data, useful to check SLA

In the IT environment, these basic mechanisms allow the configuration of all processes provided
by ITIL "best practices", included Incident Management, Change Management, Request
Fulfillment, Service Catalog, etc. In the Facility Management environment, all maintenance
processes can be configured.

2.3. Used tools
The application chosen for the workflow management uses the following tools:

• XPDL 2.0 (http://www.wfmc.org/xpdl.html) as definition language (standardized from the
WfMC, WorkFlow Management Coalition)

• the Tecnoteca River engine, which provides a standard implementation of the WfMC
specifications (http://www.wfmc.org/) for the part of interest of managing workflows in
CMDBuild, using XPDL as a native language

• the graphical editor TWE Together Workflow Editor 5.5 or older
(http://www.together.at/prod/workflow/twe) for the workflow design and for the definition of
integration mechanisms with CMDBuild

The following schema shows the workflow management according to the model standardized with
the WfMC.

CMDBuild – Open Source Configuration and Management Database Page 7

http://www.together.at/prod/workflow/twe
http://www.wfmc.org/xpdl.html

Overview Manual 2. Description of the workflow system

2.4. Terminology
The workflow "vocabulary" includes the following terms:

• process: sequence of steps that realize an action

• activity: workflow step

• process instance: active process created executing the first step

• activity instance: creation of an activity, accomplished automatically or by an operator

The above terms are arranged into CMDBuild as follows:

• each process is related to a special class defined by the Administration Module under the
heading "Processes"; the class includes all attributes of the scheduled activities

• each "process instance" corresponds to a card of the "process" class (at the current
activity), combined with the list of its versions (ended activities)

• each activity instance corresponds to a card of the "process" class (current activity) or to a
historicized version (ended activity)

Each process has a name, one or more participants, some variables and a sequence of activities
and transitions.

The process status can be:

• “active”, i.e. it is still in an intermediate activity

• “complete”, i.e. it ended its activities

• “aborted”, i.e. it has been terminated before reaching its completition

• “suspeded”, i.e. it has been temporarily suspended and can be resumed

Each activity can be distinguished by:

• a name

• a performer, which necessarily corresponds to a "user group" and optionally to an operator

CMDBuild – Open Source Configuration and Management Database Page 8

Overview Manual 2. Description of the workflow system

• a type: process start, process ending, activity performed by an operator, activity
automatically carried out by the system

• a list of attributes coming from CMDBuild or from inside the workflow, which will be set
during its implementation

• a list of widgets (visual controls of some predefined typologies) that will be set during its
creation

• a script (in the Beanshell, Groovy or Javascript languages), provided in the automatic
activities, through which the operations between an user activity and the following can be
carried out

CMDBuild – Open Source Configuration and Management Database Page 9

Overview Manual 3. Implementation method

3. Implementation method

3.1. Workflows as special classes
The mechanism for workflow management is implemented in CMDBuild through concepts and
procedures similar to the management of calsses and cards.

The workflow management includes:

• “special” Process classes, each corresponding to a type of workflow

• attributes, corresponding to the information presented (for read or write) in the forms which
manage the advancement of each single step of the process

• relations with other process instances or standard cards involved in the process

• user groups, that will be able to perform every activity, coinciding with CMDBuild user
groups

• special tools for customizing the behavior of the workflow (widgets and scripts written with
proper APIs)

Within the same homogeneity criteria between "normal" and "process" classes, we adopted the
following technical tactics:

• the new "confidential" superclass called "Activity" contains some attributes shared with
specific workflows, whose workflows are underclasses

• the "history" mechanism was used to draw the progress reports of a process

• the "relations" mechanism has been kept to create automatic or manual links between a
card and a process instance, or between two process instances

3.2. Building the workflow
The tools usable through the workflow visual editor are of utmost importance in enabling the design
of complex processes, and include:

• the choice of those attributes which can be placed on each form corresponding to a user
activity

• the choice of widgets (visual controls) which can be placed on each form corresponding to
a user activity (viewing, creating or editing cards, viewing or creating relations, single or
multiple selection of cards, upload of the attached files, implementation of reports)

• flow-control mechanisms, among them parallel activities and subprocesses

• scripting language (BeanShell, Groovy or Javascript) for the definition of those automatisms
which must be carried out between a user activity and the following

• API functions which can be called in the scripts

CMDBuild – Open Source Configuration and Management Database Page 10

Overview Manual 3. Implementation method

3.3. Defining a new process
To create a new "Process" class, you should follow the following logic sequence of passages:

• analysis of the new process which has to be implemented, in order to single out:

• a list of the user groups involved in the process

• a list of user activities, automatic activities, transition conditions, etc

• a list of descriptive attributes of the process in its user activities, the related typologies
(string, integer, etc) and their presentation mode (read-only, reading and writing,
possible compulsoriness)

• a list of values required for the creation of "Lookup" attributes

• a list of domains required to deal correlations between the new process and other
classes or other pre-existing processes (which might also be used to create the
"Reference" attributes)

• a list of widgets to be configure in every user activity

• a list of widgets to be configure in every automatic process activity

• creation of the new process class, which will be defined in the "Processes" section of the
CMDBuild Administration Module, complete of:

• specific attributes identified in the previous step

• domains identified in the previous step

• creation of missing user groups, that should be added through the Administration Module

• through the Administration Module (from the “XPDL” TAB available for each “Process” class)
export of the new process template, which includes:

• process name

• list of process attributes, that will be placed in the various user activities

• list of "actors" (users) that interact with the process (the "System" role is automatically
created to position system activities)

• design of detail flow of the workflow using the TWE external editor, which will help the
completion of the template exported by CMDBuild

• save, using the special functions of TWE external editor of the XML file (to be exact XPDL
2.0) corresponding to the designed process

• import of the process schema in CMDBuild, using the upload “XPDL” button, available
under the corresponding process under the "Processes" tab in the Administration Module

Once the operations described above are completed, the new process can be used in the
Management Module, (Menu “Processes” or headings like “process” in the Navigation Menu), thus
the process can be executed using the workflow engine Tecnoteca River.

The above mentioned operations can be carried out when you need to edit an imported process,
but the changes must be received only through the new process instances which will be started.

CMDBuild – Open Source Configuration and Management Database Page 11

Overview Manual 3. Implementation method

3.4. Initiation and progress of a process

In the Management Module, CMDBuild can perform, through the support of the Tecnoteca River
workflow engine, the processes designed with TWE Together Workflow Editor and then imported
through the Administration Module.

In order to keep the coherence with the CMDBuild functionalities, dedicated to the management of
the item cards in the system, the user interface of the Management Module was designed so that it
is consistent with the management of the normal data "classes":

• there is a special menu item, named "Processes", consistent with the "data sheets"
(otherwise "process" elements can be inserted in the Navigation menu with "data sheets"
elements or reports and dashboards)

• the process management draws on the standard managements which already exist for the
normal cards: “List”, “Card”, "Details" “Notes”, “Relations”, “History”, "Attachments"

• in the “List” TAB of a specific process, the user can see the activities instances, in which
they are involved (since they attended that activity or previous activities of that process)
with:

• filters by status (started, completed,...)

• data area with tabular display of the information (process name, activity name, request
description, process status and further attributes defined as "display base" in the
Administration Module), which you can click on in order to access to the management
card of that activity

CMDBuild – Open Source Configuration and Management Database Page 12

Overview Manual 3. Implementation method

• possible evidences of parallel activities for that process instance

• in the “Card” TAB you can visualize or fill in the attributes provided for that process activity
instance (write or read-only access can be set up through the TWE editor) otherwise you
can carry out further operations through the proper widgets (visual controls) configured with
the TWE editor

• in the “Notes” TAB you can visualize or insert notes about the activity instance

• in the “Relations” TAB you can visualize or insert relations between the activity instance
and the instances of other classes (“cards”)

• in the “History” TAB you can visualize the previous versions of that activity instance
(instances already carried out)

• in the “Email” TAB you can visualize the details of any email related to the instance of that
processes

• in the “Attachments” TAB (if the DMS Service is enabled), you can visualize the
attachments related to the process instance

The list of activities is displayed high up in the following exemplifying form, while you can carry out
an activity filling in the card at the bottom.

CMDBuild – Open Source Configuration and Management Database Page 13

Overview Manual 4. Widgets prompted to use in the user activities of the workflow

4. Widgets prompted to use in the user activities
of the workflow

4.1. Widget list
CMDBuild makes some default widgets (visual controls) available, placed in the top-right part of
the form, which manage the progress of the process through the provided activity.

Graphically, such controls are designed with buttons with the specified label during the definition
step.

About the configuration, widgets are defined as “Extended attributes” (provided in the XPDL
standard) using the TWE editor.

In this document, the data types are both standard (integer, string, date, float, boolean) and
custom types added in the workflows of CMDBuild (lookup = id + type + description, lookups =
lookup array, reference = id + idclass + description, references = reference array).

Visual control Description Parameters Notes

Widget_linkCards It shows the
paginated list of all
cards belonging to
a class, with
possible display on
a geographical
map

Input:
ClassName string
ButtonLabel string
SingleSelect integer
NoSelect integer
Required integer
Filter string
DefaultSelection
string
AllowCardEditing
integer
DisableGridFilterTog
gler boolean

Output:
CheckArray
references

The parameter SingleSelect = 1 must be
set only if the selection of one single row is
allowed (radio-button rather than checkbox)

The parameter NoSelect = 1 disables the
selection of rows

The parameter Required = 1 forces the
selection of at least one row

The Filter parameter accepts a CQL
expression (CMDBuild query language)

Example: Filter = “from Person where Id =
{client:Customer.Id}”

The optional parameter DefaultSelection
specifies the CQL query used for the
automatic selection when opening the
widget

The optional parameter AllowCardEditing =
1 adds an icon to edit the card

The optional parameter
DisableGridFilterToggler = “true” hides the
button “Disable filter”

Widget_createMo
difyCard

It shows the
specified card (if
ObjId is specified),
otherwise it allows
the creation of a
new card in the
specified class

Input:
ClassName string
ButtonLabel string
ReadOnly integer

or

Input:
Reference reference
ButtonLabel string

Example:
ClassName='User'
ObjId=client:Requester
ButtonLabel = 'Create or modify User'
Requester

Note:
the prefix “client:” is required to access a
variable before the workflow is advanced to
the following step

CMDBuild – Open Source Configuration and Management Database Page 14

Overview Manual 4. Widgets prompted to use in the user activities of the workflow

ReadOnly integer

or

Input:
ClassName string
ObjId long
ButtonLabel string
ReadOnly integer

Output:
Reference reference

ReadOnly=1 shows the card in read-only
mode

Widget_createRep
ort

Input:
ReportType string
ReportCode string
ButtonLabel string
ForcePDF integer
ForceCSV integer
Parameter-1
Parameter-2
...
Parameter-n

Output:
ReportURL string

ReportType can only take the 'custom'
value
ReportCode coincides with the report
“Code” attribute in the schedule “Report”
ForcePDF forces the output in PDF format
ForceCSV forces the output in CSV format
Parameter-1 ... Parameter-n
 represent the parameters provided by the
report

Widget_manageE
mail

It allows to produce
and email through
template or write
new e-mails which
will be sent during
the advancement
of the process.

Input:
ButtonLabel string
Template1 string
Condition1 string
NotifyWith1 string

Visualizing e-mails, the electronic mailbox
will be checked for possible new e-mails

Template1 … Templaten is the “Name” of
the Email template to use to generate the
email.
Condition1 … Conditionn is the cql
condition used to enable the email creation
with Template1.
NotifyWith1 … NotifyWithn is the name of
the template to use to send a notification
email.

Widget_openNote It visualizes the
page which
includes the HTML
editor to insert
notes

Input:
ButtonLabel string

It can't be used in the first process activity

Widget_openAttac
hment

It visualizes the
page provided for
the uploading of an
attachment which
has to be enclosed
to the current
process

Input:
ButtonLabel string

It can't be used in the first process activity

Widget_calendar It displays the
calendar with the
selected dates

Input:
ButtonLabel string
ClassName string
Filter string
EventStartDate date

From the class ClassName you can collect
the dates you want to display in the
calendar, with a possible filter.
EventStartDate is the attribute to use as
event start date.

CMDBuild – Open Source Configuration and Management Database Page 15

Overview Manual 4. Widgets prompted to use in the user activities of the workflow

EventEndDate date
EventTitle string
EventType string
EventTypeLookup
string
DefaultDate string

EventEndDate is the attribute to use as
event end date. It is optional.
EventTitle indicates the attribute that draws
the text and writes it on the calendar for
every event.
EventType is the attribute to use as event
type.
EventTypeLookup is the Lookup to use event
types. Usually is the LookupType of the
attribute EventType.
DefaultDate is the attribute to use as opening
date in calendar.

Widget_presetFro
mCard

It populates the
current activity with
the data recovered
from a selected
card.

Input:
ButtonLabel string
ClassName string
Filter string
AttributeMapping
string

ClassName, the name of the class, as an
alternative to a Filter
AttributeMapping is a string with the
structure 'a1=c1,a2=c2' that shows how to
chart activity attributes with the card ones.
The comma separates the assignments.

Widget_startWorkf
low (or just
Widget_workflow)

It allows to start a
new workflow

1) Input:
ButtonLabel string
WorkflowCode string
or
2) Input:

ButtonLabel string
FilterType string
Filter string

Output:
processRef
ReferenceType

WorkflowCode name of the starting
process
Filter: the cql filter to select a series of card
from a CMDBuild table.
The result of the filter should be the same
as the name list of the processes that
should be started from the widget itself.

Widget_customFo
rm

Allows to manage a
form or a row grid
(by adding,
removing and/or
modifying the
rows)

Input:
ButtonLabel string
ModelType "[form|
class|function]"
Layout "[grid|form]"
DataType [raw_json|
raw_text|function]
ReadOnly "[true|
false]"
Required "[true|false]"
AddDisabled "[true|
false]"
DeleteDisabled "[true|
false]"
ImportDisabled "[true|
false]"
ModifyDisabled "[true|
false]"
SerializationType
"[json|text]"
KeyValueSeparator

The structure of the custom form can be
defined starting from:
form - JSON item array
class - attributes of a class
function - function input parameters

The layout can be a form (as if it is a
CMDBuild card) or a row series.

The data of the widget can be initialized
starting form:
raw_json - JSON item array
raw_text – well-structured strings of text
function – output values of a function

Data can be serialized as type of text (see
the widget grid) or as type of json.

CMDBuild – Open Source Configuration and Management Database Page 16

Overview Manual 4. Widgets prompted to use in the user activities of the workflow

string
AttributesSeparator
string
RowsSeparator string

Output:
Output string variable

4.1.1. Further information for the use of “string template” in the tool manageEmail

The tool manageEmail allows to write e-mails which will be sent during the development of the
process. Visualizing e-mails, the electronic mailbox will be checked for possible new e-mails to
visualize the grid.

Input parameters • string ButtonLabel
• one or more blocks for the e-mails definition

◦ string template ToAddresses: recipient’s addresses
◦ string template CcAddresses: carbon copy addresses
◦ string template Subject: e-mail subject
◦ string template Content: e-mail body (HTML)
◦ string template Condition: javascript expression whose

evaluation defines if the e-mail is generated or not
• other optional parameters which include queries or javascript

expressions
• flag ReadOnly: read-only email

output parameters none

The only-read flag is seen as a boolean value; a boolean value (of the process), a positive integer
value or a non empty string are considered true

In the template strings the variables, written in the form {namespace:localname}, are interpreted in
a different way depending on the namespace (if omitted, it defaults to "server").

client:name
client:name.Id
client:name.Description

Form's name variable; for attributes such as LookUp or Reference you have to
specify, with the bullet list, whether you want the Id or the Description

server:name Process name variable in the previous step

xa:name Variable name of the extended attribute definition, extended as template
excluding the variables with namespace js and cql

user:id
user:name

ID and name of the connected user

group:id
group:name

ID and name of the connected group

js:name Variable name of the extended attribute definition interpreted as a template and
evalued as a javascript code

cql:name.field Variable name of the extended attribute definition interpreted as a template and
evalued carrying out a CQL query, whose field is identified by field

CMDBuild – Open Source Configuration and Management Database Page 17

Overview Manual 4. Widgets prompted to use in the user activities of the workflow

The definition blocks of the e-mails can be written in two ways:

ToAddresses="..."
CcAddresses="..."
Subject="..."
Content="..."

or (if you want to specify more than one e-mail):

ToAddresses1="..."
CcAddresses1="..."
Subject1="..."
Content1="..."
ToAddresses2="..."
CcAddresses2="..."
Subject2="..."
Content2="..."
...

4.1.2. Example 1
ToAddresses="foo@example.com"
Subject="{cql:QueryRequester.Description} - {client:Request}"
QueryRequester="select Description,Email,Office from Employee where Id = {cql:SillyQuery.Id}"
SillyQuery="select Id from Employee where Id={client:Requester}"

Address: The recipient's address is statically completed with the string foo@example.com

Body: Message Body Empty

Subject:

• The variable QueryRequester selects an Employee card which includes the fields
Description, Email and Office; the extracted values are available using for example the
syntax {cql:QueryRequester.Description}, which will be replaced with the field Description
extracted from the variable QueryRequester

• Inside QueryRequester, {cql:SillyQuery.Id} will be replaced with the Id field of the card
returned from the SillyQuery (indeed nested queries are supported), replaced before with
{client:Requester} with the value taken in the form

• {client:Request} of will be completed with the form value

4.1.3. Example 2
...
Content="The requester, {js:JoinJS}, belonging to the office {cql:QueryRequester.Office_value} requests:

{server:Request}"
JoinJS="{js:FirstJS}+"#"+{js:SecondJS}"
FirstJS="{cql:QueryRequester.Description}.slice(0,{xa:SplitLength})"
SecondJS="{cql:QueryRequester.Description}.slice({xa:SplitLength})"
SplitLength=2
QueryRequester="select Description,Email,Office from Employee where Id = {Requester}"

This is an example of higher complexity.

In the body there are three variables which must by replaced:

• {js:JoinJS} values the extended attribute variable like a javascript expression, splitting with
the variables FirstJS and SecondJS, always valued through javascript

• {js:FirstJS} and {js:SecondJS} include both a variable taken from a field of CQL query
QueryRequester and a static variable taken from the ones of the extended attribute

CMDBuild – Open Source Configuration and Management Database Page 18

Overview Manual 4. Widgets prompted to use in the user activities of the workflow

• {cql:QueryRequester...} includes a reference to a server side variable called Requester

• {cql:QueryRequester.Office_value} uses the Office reference description instead of its ID
(that would be just Office)

• {server:Request} takes a server side variable (as Requester), but it also states the
namespace

CMDBuild – Open Source Configuration and Management Database Page 19

Overview Manual 5. API prompted to use in the automatic activities of the workflow

5. API prompted to use in the automatic activities of
the workflow
CMDBuild offers various APIs (Application Programming Interface) which can be used in the
automatic activities of the workflow so that it is possible to implement custom behaviors
(manipulation of process variables, card creation and relations in CMDB, e-mail sending, report
creation, etc)

5.1. Key words

Process

ProcessId: Long
Id of the current process

ProcessClass: String
Class name of the current process

ProcessCode: String
univocal ProcessInstanceId of the current process

Performer

_CurrentUser: ReferenceType
reference to the User that performed the last activity of the current process

_CurrentGroup: ReferenceType
reference to the Role that performed the last activity of the current process

API

cmdb
identifies the native functions in CMDBuild

5.2. Management of CMDBuild items

They concern the CMDBuild specific data; for other data (integer, string, date, float) you can use
the manipulation methods offered by the Java language.

ReferenceType

Methods

getId (): Long
returns the Reference id

getDescription(): String
returns the Reference description

CMDBuild – Open Source Configuration and Management Database Page 20

Overview Manual 5. API prompted to use in the automatic activities of the workflow

CMDBuild – Open Source Configuration and Management Database Page 21

Overview Manual 5. API prompted to use in the automatic activities of the workflow

LookupType

Methods

getId (): Long
returns theLookup id

getType (): String
returns the type of Lookup

getDescription (): String
returns the Lookup description

getCode (): String
returns the Lookup code

CardDescriptor

Methods

getClassName (): String
returns the Class name for a CardDescriptor variable

getId (): Long
returns the Id name for a CardDescriptor variable

equals (CardDescriptor cardDescriptor): boolean
compares the CardDescriptor variable with the specified one

Card

Methods

getCode (): String
returns the Code for a Card variable

getDescription (): String
returns the Description for a Card variable

has(String name): boolean
controls the presence of the specified attribute in the Card variable

hasAttribute(String name): boolean
controls the presence of the specified attribute in the Card variable

get(String name): Object
returns the specified attribute value of the Card variable

getAttributeNames(): Set<String>
returnsthe attributes list of the Card variable

getAttributes(): Map<String, Object>
returns the attributes list and their values of the Card variable. The returned values respect

the CMDBuild types (ReferenceType, LookupType, Date, Integer, …)

CMDBuild – Open Source Configuration and Management Database Page 22

Overview Manual 5. API prompted to use in the automatic activities of the workflow

Attachments

Methods

fetch (): Iterable<AttachmentDescriptor>
returns the attachments list of the Card or of the instantiated process

upload(Attachment... attachments):void
attaches the documents to the card or to the instantiated process

upload(String name, String description, String category, String url):void
creates an attachment with name, description and category specified starting from the file

with the specified URL and attaches it to the card or to the instantiated process

selectByName(String... names): SelectedAttachments
returns the attachments of the card or of the instantiated process with the specified name

selectAll(): SelectedAttachments
returns all attachments of the card or of the instantiated process

AttachmentDescriptor

Methods

get Name(): String
returns the name of the attachment

getDescription(): String
returns the attachment description

getCategory(): String
returns the attachment category

Attachment

Methods

getUrl(): String
returns the URL of the file

DownloadedReport

Methods

getUrl (): String
returns the local URL where the report has been saved

equals (DownloadedReport downloadedReport): boolean
compares the DownloadedReport variable with the specified one

CMDBuild – Open Source Configuration and Management Database Page 23

Overview Manual 5. API prompted to use in the automatic activities of the workflow

5.3. Access methods to CMDBuild

5.3.1. NewCard

Builders

newCard (String className): NewCard
creates a new Card created in the specified Class of CMDBuild

Modifiers

withCode (String value): NewCard
adds the Code to the new card created in CMDBuild

withDescription (String value): NewCard
adds the Description to the new card created in CMDBuild

with (String name, Object value): NewCard
adds the value specified for the specified attribute to the new card created in CMDBuild

withAttribute (String name, Object value): NewCard
adds the value specified for the specified attribute to the new card created in CMDBuild

Actions

create (): CardDescriptor
creates the new card in CMDBuild setting the attributes previously defined

Example:

/*

 * Creation of a new card in the “Employee” class having
 * the following attributes:

 * “Code” = “T1000”
 * “Name” = “James”

 * “Surname” = “Hetfield”
 */

cdNewEmployee = cmdb.newCard(“Employee”)
.withCode(“T1000”)

.with(“Name”, “James”)

.withAttribute(“Surname”, “Hetfield”)

.create();

5.3.2. ExistingCard

Builders

existingCard (String className, Long id): ExistingCard

CMDBuild – Open Source Configuration and Management Database Page 24

Overview Manual 5. API prompted to use in the automatic activities of the workflow

creates a Card existing in the specified Class having the specified Id to query CMDBuild

existingCard (CardDescriptor cardDescriptor): ExistingCard
creates an existing Card indicated by the specified CardDescriptor to query CMDBuild

Modifiers

withCode (String value): ExistingCard
sets the Code for the Card requested to CMDBuild

withDescription(String value): ExistingCard
sets the Description for the Card requested to CMDBuild

with (String name, Object value): ExistingCard
it sets the specified attribute with the specified value for the Card requested to CMDBuild

withAttribute (String name, Object value): ExistingCard
it sets the specified attribute with the specified value for the Card requested to CMDBuild

withAttachment(String url, String name, String category, String description): ExistingCard
it attaches a file (pointed out through a server local url) to the selected card

by setting the file name, its category and its description

attachments(): ExistingCard
it allows you to access the attachments of the selected card

selectAll(): ExistingCard
it allows you to select all documents of the selected card

selectByName(String name1, String name2, ...): ExistingCard
it allows you to select all documents of the selected card

Actions

update ()
updates the Card in CMDBuild by setting the attributes previously indicated with the

specified values

delete ()
deletes the Card from CMDBuild
If the "attachments" modifier has been used, it will delete only the selected files

fetch (): Card
requests the Card to CMDBuild with the attributes previously indicated. If no modifier has

been used, it requests the whole Card (with all attributes)

fetch (): Iterable<AttachmentDescriptor>
If the "attachments" modifier has been used, the method returns the list of the card
attachments

upload(Attachment attachment, Attachment attachment2,.,)
to be used in the presence of the "attachments" modifier: it attaches one or more files to
the card

CMDBuild – Open Source Configuration and Management Database Page 25

Overview Manual 5. API prompted to use in the automatic activities of the workflow

upload(Attachment attachment, String description, String category, String url)
to be used in the presence of the "attachments" modifier: it attaches to the card a single
file with specified description and category

download (): Iterable<Attachment>
If the "attachments" modifier has been used, the method returns the selected attachments
of the card

copyTo ()
If the "attachments" modifier has been used, the method copies a selected attachment of
the card into a specified destination

copyToAndMerge ()
If the "attachments" modifier has been used, the method copies a selected attachment of
the card into a specified destination or skip this action if the attachment already exists

moveTo ()
If the "attachments" modifier has been used, the method moves a selected card
attachment into a specified destination

Examples:

/*
 * It modifies the card previously created in the class “Employee”

 * by setting the following attributes:
 * “Phone” = “754-3010”

 * “Email” = “j.hetfield@somemail.com”
 */

cmdb.existingCard(cdNewEmplyee)
.with(“Phone”, “754-3010”)

.withAttribute(“Email”, “j.hetfield@somemail.com”)

.update();

/*

 * (Logic) delete of the card previously created in the class
 * “Emplyoee”

 */
cmdb.existingCard(cdNewEmplyee)

.delete();
/*

 * Delete of the card attachment that was previuosly
 * created in the “Employee” class

 */

Iterable <AttachmentDescriptor> attachments =

cmdb.existingCard(cdNewEmplyee)

CMDBuild – Open Source Configuration and Management Database Page 26

mailto:j.hetfield@somemail.com

Overview Manual 5. API prompted to use in the automatic activities of the workflow

.attachments()

.fetch();

/*
 * Delete of the card attachment that was previuosly

 * created in the “Employee” class
 */

cmdb.existingCard(cdNewEmplyee)
.attachments()

.selectByName(String[]{"attachment-name"})

.delete();

5.3.3. NewProcessInstance

Builders

newProcessInstance (String processClassName): NewProcessInstance
creates a new process instance created in CMDBuild for the specified process

Modifiers

withDescription (String value): NewProcessInstance
adds the Description to the new card created in CMDBuild

with (String name, Object value): NewProcessInstance
adds the value specified for the specified attribute to the new process created in

CMDBuild

withAttribute (String name, Object value): NewProcessInstance
adds the value specified for the specified attribute to the new process created

Actions

start (): ProcessInstanceDescriptor
creates the new process in CMDBuild setting the attributes previously defined, and does

not advance

startAndAdvance (): ProcessInstanceDescriptor
creates the new process in CMDBuid setting the attributes previously defined, and

advances at the following step

Example:

/*
 * Creation of a new card in the “RequestForChange” class

 * having the following attributes
 * “Requester” = “James Hetfield”

 * “RFCExtendedDescription” = “My printer is broken”
 */

CMDBuild – Open Source Configuration and Management Database Page 27

Overview Manual 5. API prompted to use in the automatic activities of the workflow

pidNewRequestForChange =
cmdb.newProcessInstance(“RequestForChange”)
.with(“Requester”, “James Hetfield”)

.withAttribute(“RFCExtendedDescription”, “My printer is broken”)

.startAndAdvance();

CMDBuild – Open Source Configuration and Management Database Page 28

Overview Manual 5. API prompted to use in the automatic activities of the workflow

5.3.4. ExistingProcessInstance

Builders

existingProcessInstance (String processClassName, int processId): ExistingProcessInstance
creates a process instance existing in the specified process class with the specified Id

Modifiers

withProcessInstanceId (String value): ExistingProcessInstance
sets the process instance Id

with (String na me, Object value): ExistingProcessInstance
sets the specified attribute with the specified value for the process instance

w ithAttribute (String na me, Object value): ExistingProcessInstance
sets the specified attribute with the specified value for the process instance

withDescription (String value): ExistingProcessInstance
sets the specified attribute with the specified value for the process instance

attachments(): Attachments
allows you to access the attachments of the process instance

Actions

abort(): void
aborts the process instance

advance(): void
advances a process instance

resume(): void
resumes the hanging process instance

suspend(): void
suspends the open process instance

update() : void
updates the process instance

Example:

/*

* Update of the process instance in the class “Request
* for change” with Id = pid by editing the requester and

* advancing the process at the following step
*/

cmdb.existingProcessInstance(“RequestForChange”, pid)

.with(“Requester”, cdNewEmployee.getId())

.advance();

CMDBuild – Open Source Configuration and Management Database Page 29

Overview Manual 5. API prompted to use in the automatic activities of the workflow

5.3.5. NewRelation

Builders

newRelation (String domainName) : ExistingProcessInstance
creates a new relation added in the specified Domain of CMDBuild

Modifiers

withCard1 (String className, int cardId): NewRelation
sets the card in the source side of the relation

withCard2 (String className, int cardId): NewRelation
sets the card in the target side of the relation

with Attribute (String attributeName, Object attributeValue): NewRelation
sets the value of a relation attribute

Actions

create ()
creates the new relation in CMDBuild among the Cards indicated in the specified Domain

Example:

/*

 * Creation of a new relation in the “AssetAssignee” domain
 * between a card of the selected “Asset” class,

 * through the "Item" Reference attribute, and
 * the card previously created in the “Employee” class

 */
cmdb.newRelation(“AssetAssignee”)

.withCard1(“Employee”, cdNewEmployee.getId())

.withCard2(“Asset”, Item.getId())

.create();

5.3.6. ExistingRelation

Builders

existingRelation (String domainName): ExistingRelation
creates an existing relation in the specified Domain of CMDBuild

Modifiers

withCard1 (String className, int cardId): ExistingRelation
sets IdClass and l'ObjId of the Card from the source side of the relation

withCard2 (String className, int cardId): ExistingRelation

CMDBuild – Open Source Configuration and Management Database Page 30

Overview Manual 5. API prompted to use in the automatic activities of the workflow

sets IdClass and l'ObjId of the Card from the target side of the relation

Actions

delete ()
deletes the relation existing among the Cards indicated in the specified Domain

Example:

/*
 * Delete the relation on the “AssetAssignee” domain

 * among the cards previously indicated
 */

cmdb.existingRelation(“AssetAssignee”)
.withCard1(“Employee”, cdNewEmployee.getId())

.withCard2(“Asset”, Item.getId())

.delete();

5.3.7. QueryClass

Builders

queryClass (String className): QueryClass
creates a query that queries the class specified in CMDBuild

Modifiers

withCode (String value): QueryClass
sets the Card Code for the filter used to query CMDBuild

withDescription (String value): QueryClass
sets the Card Description for the filter used to query CMDBuild

with(String name, Object value): QueryClass
sets the value for the specified attribute of the Card for the filter used to query

CMDBuild

withAttribute(String name, Object value): QueryClass
sets the value for the specified attribute of the Card for the filter used to query

CMDBuild

Actions

fetch (): List<Card>
performs the search query on the specified Class of CMDBuild and returns the list of

those Cards that respect the filter previously set

Example:

CMDBuild – Open Source Configuration and Management Database Page 31

Overview Manual 5. API prompted to use in the automatic activities of the workflow

/*

 * List of the cards of the “Employee” class having
 * the “State” attribute set to 'Active'

 */
Employees = cmdb.queryClass(“Employee”)

.with(“State”, “Active”)

.fetch();

5.3.8. QueryLookup

Builders

queryLookup (String type): QueryAllLookup
creates a query that queries the lookup type specified in CMDBuild

Actions

fetch (): Iterable<Lookup>
performs the search query on the specified lookup type of CMDBuild and returns the

list of those Lookups

5.3.9. CallFunction

Builders

callFunction (String functionName): CallFunction
creates a call to a stored procedure previously defined in PostgreSQL

Modifiers

with (String name, Object value): CallFunction
sets the value of the input parameter specified for the stored procedure

Actions

execute (): Map<String, Object>
performs the stored procedure and returns the list of the output parameters with the

related values

Example:

/*

 * Call of the stored PostgreSQL procedure
 * “cmwf_getImpact”(IN “DeliveryDate” date, IN “Cost” integer,

 * OUT “Impact” character varying)
 * that computes the impact level (attribute of

 * “Impact” process) of an activity on a scale of "High",

CMDBuild – Open Source Configuration and Management Database Page 32

Overview Manual 5. API prompted to use in the automatic activities of the workflow

 * “Medium” and “Low”, given in input the expected delivery

 * date (process attribute “ExpectedDeliveryDate”) and
 * the price (attribute “ManHoursCost”) expressed in hour/employee

 */
spResultSet = cmdb.callFunction(“cmwf_getImpact”)

.with(“DeliveryDate”, ExpectedDeliveryDate.getTime())

.with(“Cost”, ManHoursCost)

.execute();
Impact = spResultSet.get(“Impact”)

Note: SQL functions - which should be called - must be defined according to CMDBuild standards.
For their definitio,n see the Administrator Manual, section Cart TAB, paragraph “Definition of the
data source (PostgreSQL function)”.

5.3.10. QueryRelations

Builders

queryRelations (CardDescriptor cardDescriptor): ActiveQueryRelations
creates a query to ask CMDBuild the Cards related to the specified one

queryRelations (String className, long id): ActiveQueryRelations
creates a query to ask CMDBuild the Cards related to that specified by className and

id

Modifiers

withDomain (String domainName): ActiveQueryRelations
sets the Domain to perform the query

Actions

fetch (): List<CardDescriptor>
performs the query on CMDBuild using the parameters previously defined, it returns the

list of the linked Cards

Example:

/*
 * List of “Assets” linked to the “Employee” card indicated

 * by the CardDescriptor cdNewEmployee previously created,
 * through the relation on the domain “AssetAssignee”

 */
assets = cmdb.queryRelation(cdNewEmployee)

.withDomain(“AssetAssignee”)

.fetch();

CMDBuild – Open Source Configuration and Management Database Page 33

Overview Manual 5. API prompted to use in the automatic activities of the workflow

5.3.11. CreateReport

Builders

createReport(String title, String format): CreateReport
creates the Report in the specified format (pdf, csv) with the specified Title

Modifiers

with(String name, Object value): CreateReport
sets the input parameter value specified for the Report

Actions

download(): DownloadedReport
generates the indicated Report using the parameters previously defined

Example:

/*

 * It generated the Report “DismissedAssets” which shows the list
 * of the abandoned Assets

 */
newReport = cmdb.createReport(“Assigned assets to”)

.download();

5.3.12. NewMail

Builders

newMail (): NewMail
creates a new e-mail to send

Modifiers

withFrom (String from): NewMail
sets the sender of the e-mail to send

withTo (String to): NewMail
sets the recipient of the e-mail to send

withTo (String... tos): NewMail
sets the recipients of the e-mail to send

withTo (Iterable<String> tos): NewMail
sets the recipients of the e-mail to send

withCc (String cc): NewMail
sets the carbon copy recipient of the e-mail to send

CMDBuild – Open Source Configuration and Management Database Page 34

Overview Manual 5. API prompted to use in the automatic activities of the workflow

withCc (String... ccs): NewMail
sets the carbon copy recipients of the e-mail to send

withCc (Iterable<String> ccs): NewMail
sets the carbon copy recipients of the e-mail to send

withBcc (String bcc): NewMail
sets the blind carbon copy recipient of the e-mail to send

withBcc (String... bccs): NewMail
sets the blind carbon copy recipients of the e-mail to send

withBcc (Iterable<String> bccs): NewMail
sets the blind carbon copy recipients of the e-mail to send

withSubject (String subject): NewMail
sets the subject of the e-mail to send

withContent (String content): NewMail
sets the text of the e-mail to send

withContentType (String contentType): NewMail
sets the content MimeType of the e-mail to send, the allowed values are “text/html” or

“text/plain”. If not otherwise specified, the default value is “text/plain”

withAttachment (URL url): NewMail
sets the url of a document to enclose to the e-mail

withAttachment (String url): NewMail
sets the url (as a string) of a document to enclose to the e-mail

withAttachment (URL url, String name): NewMail
sets the url of a document with the specified name to enclose to the e-mail

withAttachment (String url, String name): NewMail
sets the url (as a string) of a document to enclose to the e-mail with a specified name

withAttachment (DataHandler dataHandler): NewMail
sets the dataHandler as an attachment of the e-mail

withAttachment (DataHandler dataHandler, String name): NewMail
sets the dataHandler as an attachment with the specified name

with Card (@Nullable String className, @Nullable Long cardId): NewMail
sets the card related to the email

with Card (@Nullable CardDescriptor card): NewMail
sets the card related to the email

with Card (@Nullable ReferenceType card): NewMail
sets the card related to the email

withAsynchronousSend (bool boolean): NewMail
 sends the e-mail asynchronously in spite of the script; in this way any timeout problem
will be avoided, but you will not be able to intervene in case of error by sending the e-mail

CMDBuild – Open Source Configuration and Management Database Page 35

Overview Manual 5. API prompted to use in the automatic activities of the workflow

Actions

send ()
performs the e-mail sending using the previously defined statements

Example:

/*

 * Send a new email
 */

cmdb.newMail()
.withFrom(“fromaddress@somemail.com”)

.withTo(“toaddress@somemail.com”)

.withCc(“ccaddress@somemail.com”)

.withSubject(“Mail subject”)

.withContent(“Mail content”)

.send();

5.4. Methods for types conversion

5.4.1. ReferenceType

Methods

referenceTypeFrom(Card card): ReferenceType
returns the ReferenceType item related to the specified Card

referenceTypeFrom(CardDescriptor cardDescriptor): ReferenceType
retuns the ReferenceType item related to the specified CardDescriptor

referenceTypeFrom(long id): ReferenceType
returns the ReferenceType item related to the card with the specified Id

Example:

/*
 * Set the “Requester” process attribute Reference

 * type, given the “cdNewEmployee” CardDescriptor
 * previously created

 */
Requester = cmdb.referenceTypeFrom(cdNewEmployee);

5.4.2. LookupType

Methods

selectLookupById (long id): LookupType
returns the LookupType item with the specified Id

selectLookupByCode (String type, String code): LookupType
returns the LookupType item with specified Type and Code

CMDBuild – Open Source Configuration and Management Database Page 36

mailto:ccaddress@somemail.com
mailto:toaddress@somemail.com
mailto:fromaddress@somemail.com

Overview Manual 5. API prompted to use in the automatic activities of the workflow

selectLookupByDescription (String type, String description): LookupType
returns the LookupType item with specified Type and Description

Example:

/* Set the "State" process attribute Lookup type having:

 * “Type” = “Employee state”
 * “Code” = “ACTIVE”

 */
State = cmdb.selectLookupByCode(“Employee state”, “ACTIVE”);

5.4.3. CardDescriptor

Methods

cardDescriptorFrom(ReferenceType reference): CardDescriptor
returns the CardDescriptor of the specified card through the specified ReferenceType item

Example:

/*
 * Get the CardDescriptor related to the "Requester"

 * process attribute Reference type
*/

cdSelectedEmployee = cmdb.cardDescriptorFrom(Requester);

5.4.4. Card

Methods

cardFrom(ReferenceType reference): Card
returns the Card item of the specified card through the specified ReferenceType item

Example:

/*
 * Get the complete Card related to the "Requester"

 * process attribute Reference type
 */

selectedEmployee = cmdb.cardFrom(Requester);

CMDBuild – Open Source Configuration and Management Database Page 37

Overview Manual 6. Appendix: Glossary

6. Appendix: Glossary

ATTACHMENT

An attachment is a file associated to a card.

In order to manage the attachments, CMDBuild uses in embedded mode any document system
which is compatible with the standard protocol CMIS.

The management of the attachments supports the versioning of those files that have been uploaded
a few times, with automatic numbering.

See also: Card

ACTIVITY

Activity: workflow step.

An activity can be an interaction with the operator (interactive) or a script that processes operations
via API (automatic).

A process instance is a single process that has been activated automatically by the application or
manually by an operator.

See also: Process

ATTRIBUTE

The term refers to an attribute of a CMDBuild class (for example in "supplier" class the attributes
can be: name, address, phone number, etc.).

CMDBuild allows you to create new attributes (in classes and domains) or edit existing ones.

In the database, every attribute is related to a column in the table which implements the associated
class and corresponds, in the Data Management Module, to a data entry field of the specific card
for the class management.

See also: Class, Domain, Report, Superclass, Attribute Type

BIM

Method with the aim to support the whole life cycle of a building: from its construction, use and
maintenance, to its demolition, if any.

The BIM method (Building Information Modeling) is supported by several IT programs that can
interact through an open format for data exchange, called IFC (Industry Foundation Classes).

CMDBuild includes a connector to sync some CI information (technical or maintenance records)
and an interactive viewer for the 3D model of the building represented by the IFC file.

See also: CI, GIS

CI

We define CI (Configuration Item) each item that provides a service to a user and has a sufficient
detail level for its technical management.

In CMDBuild, the term is applied to a generic context of Asset Management extending the concept
usually used in the management of IT infrastructure.

CI examples include: server, workstation, software, plant, electric panel, fire extinguisher, furniture,
etc.

CMDBuild – Open Source Configuration and Management Database Page 38

Overview Manual 6. Appendix: Glossary

See also: Configuration, ITIL

CLASS

A Class is a complex data type having a set of attributes that describe that kind of data.

A Class models an object that has to be managed in the CMDB, such as a company, a building, an
asset, a service, etc.

CMDBuild allows the administrator - with the Schema Module - to define new classes or delete /
edit existing ones.

A class is represented in the database with a table automatically generated when defining the
class and corresponds - in the Data Management Module - to a card for the consultation and
update of the cards expected in the model.

See also: Card, Attribute

CMDB

ITIL best practice (Information Technology Infrastructure Library), which has become a "standard
de facto" and a non-proprietary system for services management, has introduced the term CMDB
referred to the Configuration Item database.

CMDBuild extends the concept of CMDB applying it to a generic Asset Management context.

See also: Database, ITIL

CONFIGURATION

The configuration management process is designed to keep updated and available to other
processes the items (Configuration Item) information, their relations and their history.

Even if it known as one of the main processes within the ITIL Best Practice, the same concept is
used in CMDBuild for generic contexts of Asset Management.

See also: CI, ITIL

DASHBOARD

In CMDBuild, a dashboard corresponds to an application page including one or more different
graphic representations, in this way you can immediately hold in evidence some key parameters
(KPI) related to management aspects of the Asset Management service.

See also: Report

DATABASE

The term refers to a structured collection of information, hosted on a server, as well as utility
software that handle this information for tasks such as initialization, allocation, optimization,
backup, etc..

CMDBuild relies on PostgreSQL, the most powerful, reliable, professional and Open Source
database, and uses its advanced features and object-oriented structure.

The Asset Management database, implemented on the basis of the CMDBuild logics and
philosophy, is also indicated as CMDB (Configuration Management Data Base).

DOMAIN

A domain is a relation between two classes.

A domain has a name, two descriptions (direct and inverse), classes codes, cardinality and
attributes.

CMDBuild – Open Source Configuration and Management Database Page 39

Overview Manual 6. Appendix: Glossary

The system administrator, using the Administration Module, is able to define new domains or
delete / edit existing ones.

It is possible to define custom attributes for each domain.

See also: Class, Relation

DATA FILTER

A data filter is a restriction of the list of those elements contained in a class, obtained by specifying
boolean conditions (equal, not equal, contains, begins with, etc.) on those possible values that can
be accepted by every class attribute.

Data filters can be defined and used exceptionally, otherwise they can be stored by the operator
and then recalled, or configured by the Administrator and made available by operators.

See also: Class, View

GIS

A GIS is a system able to produce, manage and analyze spatial data by associating geographic
elements to one or more alphanumeric descriptions.

GIS functionalities in CMDBuild allow you to create geometric attributes (in addition to standard
attributes) that represent, on plans / maps, markers position (assets), polylines (transmission lines)
and polygons (floors, rooms, etc.).

See also: BIM

GUI FRAMEWORK

It is a framework provided by CMDBuild to simplify the implementation of external custom user
interfaces and to grant a simplified access to non-technical users. They can be issued onto any
webportals and can be used with CMDBuild through the standard REST webservice.

The CMDBuild GUI Framework is based on javascript JQuery libraries.

See also: Mobile, Webservice

ITIL

It is a "best practices" system that established a "standard de facto"; it is a non-proprietary system
for the management of IT services, following a process-oriented schema (Information Technology
Infrastructure Library).

ITIL processes include: Service Support, Change Management and the Configuration
Management.

For each process, ITIL handles description, basic components, criteria and tools for quality
management, roles and responsibilities of the resources involved, integration points with other
processes (to avoid duplications and inefficiencies).

CMDBuild uses some ITIL concepts and applies them to a generic context of Asset Management.

See also: Configuration

LOOKUP

The term "Lookup" refers to a pair of values (Code, Description) set by the administrator in the
Administration Module.

These values are used to bind the user's choice (at the form filling time) to one of the preset values
(also called multiple choice or picklist).

With the Administration Module it is possible to define new "LookUp" tables according to

CMDBuild – Open Source Configuration and Management Database Page 40

Overview Manual 6. Appendix: Glossary

organization needs.

See also: Attribute type

MOBILE

It is a user interface for mobile tools (smartphones and tablets).

It is implemented as multi-platform app (iOS, Android) and can be used with the CMDB through the
REST webservice.

See also: Webservice

PROCESS

The term process (or workflow) refers to a sequence of steps that realize an action.

For each process (type of process) a new process instance will be started when users have to
carry out an action on assets according to a procedure implemented as workflow.

A process is activated by starting a new process (filling related form) and ends when the last
workflow step is executed.

The workflows managed in CMDBuild are described in the standard markup language XPDL (XML
Process Definition Language), ruled by the WFMC (WorkFlow Management Coalition).

See also: Workflow step

RELATION

A relation is a link between two CMDBuild cards or, in other words, an instance of a given domain.

A relation is defined by a pair of unique card identifiers, a domain and attributes (if any).

CMDBuild allows users, through the Management Module, to define new relations among the
cards stored in the CMDB.

See also: Class, Domain

REPORT

The term refers to a document (PDF or CSV) containing information extracted from one or more
classes and related domains.

The reports can be configured in the Administration Module importing in XML format the
description of the layout designed with the visual editor JasperReports. They can be provided to
operators in the application menu.

CMDBuild users can print reports using the Management Module, which will result as printouts,
charts, documents, labels, etc.

See also: Class, Domain, Database

CARDS

The term "card" refers to an element stored in a class (corresponding to the record of a table in the
database).

A card is defined by a set of values, i.e. the attributes defined for its class.

CMDBuild users, through the Management Module, are able to store new cards and update /
delete existing ones.

Card information is stored in the database and, more exactly, in the table/columns created for that
class (Administration Module).

See also: Class, Attribute

CMDBuild – Open Source Configuration and Management Database Page 41

Overview Manual 6. Appendix: Glossary

SUPERCLASS

A superclass is an abstract class used as template to define attributes shared between subclasses.
From the abstract class, or from abstract class hierarchies, you can derive real classes that contain
data and include both shared attributes (specified in the superclass) and specific subclass
attributes, besides the relations on the superclass domains and on specific domains.

For example, you can define the superclass "Company" with some basic attributes (VAT number,
Business name, Phone number, etc.) and the derived subclasses "Customers" and "Suppliers",
each one with both generic attributes of the superclass and its own attributes and relations.

See also: Class, Attribute

TENANT

A "tenant", in CMDBuild, is a part of the CMDB reserved to users belonging to a suborganization of
the CMDBuild instance (a Group Society, a Seat, a Division, etc.).

Working in "multitenant" mode, every user works only on data of his/her suborganization and, in
case, on common data: "tenants".

The list of usable Tenants can be defined from an applicable class of CMDBuild (seats, companies,
customers, etc.) or from a database custom function, where you can implement complex visibility
rules.

ATTRIBUTE TYPE

Each attribute has a data type that represents attribute information and management.

The type of attribute and its management modes are defined in the Administration Module.

CMDBuild manages the following attribute types: “Boolean”, “Date”, “Decimal”, “Double”, “Inet” (IP
address), “Integer”, “LookUp” (lists set in "Settings" / "LookUp"), “Reference” (foreign key), “String”,
“Text”, “TimeStamp”.

See also: Attribute

VIEW

A view includes cards defined with logic criteria of filters applied to one or more CMDB classes.

In particular, a view can be defined in CMDBuild by applying a filter to a class (so it will contain a
reduced set of the same rows) or specifying an SQL function which extracts attributes from one or
more related classes.

The first view type maintains all functionalities available for a class, the second one allows the sole
display and search with fast filter.

See also: Class, Filter

WEBSERVICE

A webservice is an interface that describes a collection of methods, available over a network and
working using XML messages.

With webservices, an application allows other information and applications to interact with its
methods.

CMDBuild includes a SOAP and a REST webservice, which are provided to external applications
to read or write data on CMDB or process operations.

WIDGET

A widget is a component of a GUI that improves user interaction with the application.

CMDBuild – Open Source Configuration and Management Database Page 42

Overview Manual 6. Appendix: Glossary

CMDBuild uses widgets (presented as "buttons") that can be placed on cards or processes. The
buttons open popup windows that allow you to consult or insert data or process other operations.

CMDBuild includes some standards widgets to process the most common operations, but it also
supplies the specifications to implement other custom widgets.

CMDBuild – Open Source Configuration and Management Database Page 43

	1. Introduction
	1.1. The application
	1.2. Official website
	1.3. CMDBuild modules
	1.4. Available manuals
	1.5. Applications based on CMDBuild

	2. Description of the workflow system
	2.1. General Information
	2.2. Purposes
	2.3. Used tools
	2.4. Terminology

	3. Implementation method
	3.1. Workflows as special classes
	3.2. Building the workflow
	3.3. Defining a new process
	3.4. Initiation and progress of a process

	4. Widgets prompted to use in the user activities of the workflow
	4.1. Widget list
	4.1.1. Further information for the use of “string template” in the tool manageEmail
	4.1.2. Example 1
	4.1.3. Example 2

	5. API prompted to use in the automatic activities of the workflow
	5.1. Key words
	5.2. Management of CMDBuild items
	ReferenceType
	LookupType
	CardDescriptor
	Card
	Attachments
	AttachmentDescriptor
	Attachment
	DownloadedReport

	5.3. Access methods to CMDBuild
	5.3.1. NewCard
	5.3.2. ExistingCard
	5.3.3. NewProcessInstance
	5.3.4. ExistingProcessInstance
	5.3.5. NewRelation
	5.3.6. ExistingRelation
	5.3.7. QueryClass
	5.3.8. QueryLookup
	5.3.9. CallFunction
	5.3.10. QueryRelations
	5.3.11. CreateReport
	5.3.12. NewMail

	5.4. Methods for types conversion
	5.4.1. ReferenceType
	5.4.2. LookupType
	5.4.3. CardDescriptor
	5.4.4. Card

	6. Appendix: Glossary

